1. 彩色图像处理

1.1. 彩色空间

  • RGB
    • CCD技术直接感知R,G,B三个分量
    • 是图像成像、显示、打印等设备的基础
  • CMY(青、深红、黄)、CMYK (青、深红、黄、黑)
    • 运用在大多数在纸上沉积彩色颜料的设备,如彩色打印机和复印机
    • CMYK
      • 打印中的主要颜色是黑色
      • 等量的CMY原色产生黑色,但不纯
      • 在CMY基础上,加入黑色,形成CMYK彩色空间
    • HSV
      • Hue 、Saturation、Value (色调、饱和度、数值)
      • 基于圆柱坐标系的颜色模型
        • 圆锥体来表示HSV
        • 圆锥的顶面对应于V=1
        • 色彩H由绕V轴的旋转角给定。
        • 红色对应于角度0° ,绿色对应于角度120°,蓝色对应于角度240°
        • 饱和度S取值从0到1,所以圆锥顶面的半径为1 90
      • HSI(色调、饱和度、亮度)
        • 两个特点:
          • I 分量与图像的彩色信息无关
          • H和S分量与人感受颜色的方式是紧密相连的
        • 将亮度( I )与色调(H)和饱和度(S)分开
        • 避免颜色受到光照明暗(I)等条件的干扰
        • 仅仅分析反映色彩本质的色调和饱和度
        • 广泛用于计算机视觉、图像检索和视频检索 91
      • YIQ
        • Y指亮度(Brightness),即灰度值
        • I和Q指色调,描述色彩及饱和度
        • 用于彩色电视广播,被北美的电视系统所采用(属于NTSC系统)
        • Y分量可提供黑白电视机的所有影像信息
      • YUV
        • Y指亮度,与YIQ的Y相同
        • U和V也指色调,不同于YIQ的I和Q
        • 用于彩色电视广播,被欧洲的电视系统所采用(属于PAL系统)
        • Y分量也可提供黑白电视机的所有影像信息
      • YCbCr
        • Y指亮度,与YIQ和YUV的Y相同
        • Cb和Cr由U和V调整得到
        • JPEG采用的彩色空间
      • CLE Lab
        • 国际照明委员会制定的色彩模式
        • 自然界中任何一点色可以在Lab空间表达出来
        • 色彩空间比RGB空间大
          • Lab 颜色模型取坐标Lab
          • L:亮度(lightness)
          • a:正数代表红色,负数代表绿色
          • b:正数代表黄色,负数代表蓝色
        • 以数字化的方式来描述人的视觉感应
          • 与设备无关
          • 弥补了RGB和CMYK模式必须依赖设备色彩特性的不足

1.2. 彩色空间转换

  • RGB -> CMY [CMY]=[111][RGB]\biggr[ \begin{matrix} C \\ M \\ Y \\ \end{matrix}\biggr] = \biggr[ \begin{matrix} 1 \\ 1 \\ 1 \end{matrix} \biggr] - \biggr[ \begin{matrix} R \\ G \\ B \end{matrix} \biggr]
    • RGB 和 CMY 值都归一化[0,1]
    • 在Matlab中,可以通过指令“imcomplement”实现RGB格式的图像与CMY格式图像的转换? 92
    • RGB模型 93
# RGB颜色模型
function rgbcube(vx, vy, vz)
%RGBCUBE Displays an RGB cube on the MATLAB desktop.
%   RGBCUBE(VX, VY, VZ) displays an RGB color cube, viewed from point
%   (VX, VY, VZ).  With no input arguments, RGBCUBE uses (10, 10, 4)
%   as the default viewing coordinates.  To view individual color
%   planes, use the following viewing coordinates, where the first
%   color in the sequence is the closest to the viewing axis, and the 
%   other colors are as seen from that axis, proceeding to the right
%   right (or above), and then moving clockwise. 
%
%      -------------------------------------------------
%           COLOR PLANE                  ( vx,  vy,  vz)
%      -------------------------------------------------
%       Blue-Magenta-White-Cyan          (  0,   0,  10)
%       Red-Yellow-White-Magenta         ( 10,   0,   0)
%       Green-Cyan-White-Yellow          (  0,  10,   0)
%       Black-Red-Magenta-Blue           (  0, -10,   0)
%       Black-Blue-Cyan-Green            (-10,   0,   0)
%       Black-Red-Yellow-Green           (  0,   0, -10)
%
% Set up parameters for function patch.
vertices_matrix = [0 0 0;0 0 1;0 1 0;0 1 1;1 0 0;1 0 1;1 1 0;1 1 1];
faces_matrix = [1 5 6 2;1 3 7 5;1 2 4 3;2 4 8 6;3 7 8 4;5 6 8 7];
colors = vertices_matrix; 
% The order of the cube vertices was selected to be the same as 
% the  order of the (R,G,B) colors (e.g., (0,0,0) corresponds to 
% black, (1,1,1) corresponds to white, and so on.)

% Generate RGB cube using function patch.
patch('Vertices', vertices_matrix, 'Faces', faces_matrix, ...
      'FaceVertexCData', colors, 'FaceColor', 'interp', ...
      'EdgeAlpha', 0) 

% Set up viewing point.
if nargin == 0
   vx = 10; vy = 10; vz = 4;
elseif nargin ~= 3
   error('Wrong number of inputs.')
end
axis off
view([vx, vy, vz])
axis square
  • HSI模型 94

    • HSI → RGB 0H2π/3R=I[1+Scos(H)cos(π/3H)]G=3I(R+B)B=I(1S) \begin{matrix} 0 \le H \le 2\pi/3 \\ R = I\biggr[1 + \frac{S \cdot \cos(H)}{\cos(\pi/3 -H)}\biggr]\\ G = 3\cdot I -(R+B)\\ B = I\cdot (1-S) \end{matrix} 2π/3H4π/3G=I[1+Scos(H)cos(π/3H)]B=3I(R+G)R=I(1S) \begin{matrix} 2\pi /3 \le H \le 4\pi/3 \\ G = I\biggr[1 + \frac{S \cdot \cos(H)}{\cos(\pi/3 -H)}\biggr]\\ B = 3\cdot I -(R+G)\\ R = I\cdot (1-S) \end{matrix} 4π/3H2πB=I[1+Scos(H)cos(π/3H)]R=3I(R+B)G=I(1S) \begin{matrix} 4\pi/3 \le H \le 2\pi \\ B = I\biggr[1 + \frac{S \cdot \cos(H)}{\cos(\pi/3 -H)}\biggr]\\ R = 3\cdot I -(R+B)\\ G = I\cdot (1-S) \end{matrix}
  • HSI → RGB

# HSI转换为RGB模型
function rgb = hsi2rgb(hsi)
%HSI2RGB Converts an HSI image to RGB.
%   RGB = HSI2RGB(HSI) converts an HSI image to RGB, where HSI is
%   assumed to be of class double with:  
%     hsi(:, :, 1) = hue image, assumed to be in the range
%                    [0, 1] by having been divided by 2*pi.
%     hsi(:, :, 2) = saturation image, in the range [0, 1].
%     hsi(:, :, 3) = intensity image, in the range [0, 1].
%
%   The components of the output image are:
%     rgb(:, :, 1) = red.
%     rgb(:, :, 2) = green.
%     rgb(:, :, 3) = blue.

%   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
%   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
%   $Revision: 1.5 $  $Date: 2003/10/13 01:01:06 $

% Extract the individual HSI component images.
H = hsi(:, :, 1) * 2 * pi;
S = hsi(:, :, 2);
I = hsi(:, :, 3);

% Implement the conversion equations.
R = zeros(size(hsi, 1), size(hsi, 2));
G = zeros(size(hsi, 1), size(hsi, 2));
B = zeros(size(hsi, 1), size(hsi, 2));

% RG sector (0 <= H < 2*pi/3).
idx = find( (0 <= H) & (H < 2*pi/3));
B(idx) = I(idx) .* (1 - S(idx));
R(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx)) ./ ...
                                          cos(pi/3 - H(idx)));
G(idx) = 3*I(idx) - (R(idx) + B(idx));

% BG sector (2*pi/3 <= H < 4*pi/3).
idx = find( (2*pi/3 <= H) & (H < 4*pi/3) );
R(idx) = I(idx) .* (1 - S(idx));
G(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 2*pi/3) ./ ...
                    cos(pi - H(idx)));
B(idx) = 3*I(idx) - (R(idx) + G(idx));

% BR sector.
idx = find( (4*pi/3 <= H) & (H <= 2*pi));
G(idx) = I(idx) .* (1 - S(idx));
B(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 4*pi/3) ./ ...
                                           cos(5*pi/3 - H(idx)));
R(idx) = 3*I(idx) - (G(idx) + B(idx));

% Combine all three results into an RGB image.  Clip to [0, 1] to
% compensate for floating-point arithmetic rounding effects.
rgb = cat(3, R, G, B);
rgb = max(min(rgb, 1), 0);
  • RGB → HSI

θ=arccos12[(RG)+(RB)](RG)2+(RG)(RB) \theta = \arccos\frac{\frac{1}{2}\cdot [(R-G)+(R-B)]}{\sqrt{(R-G)^2 + (R-G)\cdot(R-B)}}

H={θBG360θB>G H = \biggr\{\begin{matrix} \theta & B \le G \\ 360- \theta & B \gt G \\ \end{matrix}

S=13R+G+Bmin(R,G,B) S = 1- \frac{3}{R+G+B}\min{(R,G,B)}

I=13(R+G+B) I = \frac{1}{3}(R+G+B)

  # RGB转换为HSI模型
  function hsi = rgb2hsi(rgb)
  %RGB2HSI Converts an RGB image to HSI.
  %   HSI = RGB2HSI(RGB) converts an RGB image to HSI. The input image
  %   is assumed to be of size M-by-N-by-3, where the third dimension
  %   accounts for three image planes: red, green, and blue, in that
  %   order. If all RGB component images are equal, the HSI conversion
  %   is undefined. The input image can be of class double (with values
  %   in the range [0, 1]), uint8, or uint16. 
  %
  %   The output image, HSI, is of class double, where:
  %     hsi(:, :, 1) = hue image normalized to the range [0, 1] by
  %                    dividing all angle values by 2*pi. 
  %     hsi(:, :, 2) = saturation image, in the range [0, 1].
  %     hsi(:, :, 3) = intensity image, in the range [0, 1].

  %   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
  %   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
  %   $Revision: 1.5 $  $Date: 2005/01/18 13:44:59 $

  % Extract the individual component images.
  rgb = im2double(rgb);
  r = rgb(:, :, 1);
  g = rgb(:, :, 2);
  b = rgb(:, :, 3);

  % Implement the conversion equations.
  num = 0.5*((r - g) + (r - b));
  den = sqrt((r - g).^2 + (r - b).*(g - b));
  theta = acos(num./(den + eps));

  H = theta;
  H(b > g) = 2*pi - H(b > g);
  H = H/(2*pi);

  num = min(min(r, g), b);
  den = r + g + b;
  den(den == 0) = eps;
  S = 1 - 3.* num./den;

  H(S == 0) = 0;

  I = (r + g + b)/3;

  % Combine all three results into an hsi image.
  hsi = cat(3, H, S, I);

95

  • RGB → YIQ [YIQ]=[0.2990.5870.1140.5960.2740.3220.2110.5230.312][RGB] \biggr[ \begin{matrix} Y \\ I \\ Q \end{matrix} \biggr] = \biggr[ \begin{matrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & -0.322 \\ 0.211 & -0.523 & 0.312 \end{matrix} \biggr] \cdot \biggr[\begin{matrix} R \\ G\\B \end{matrix}\biggr]
    • 从RGB格式图像到YIQ格式图像实现通过指令“rgb2ntsc”
  • YIQ → RGB [RGB]=[10.9560.62110.2720.64711.1061.703][YIQ] \biggr[ \begin{matrix} R \\ G \\ B \end{matrix} \biggr] = \biggr[ \begin{matrix} 1 & 0.956 & 0.621 \\ 1 & -0.272 & -0.647 \\ 1 & -1.106 & 1.703 \end{matrix} \biggr] \cdot \biggr[\begin{matrix} Y \\ I\\ Q \end{matrix}\biggr]

    • 从YIQ格式图像到RGB格式图像实现通过指令“ntsc2rgb” 96
  • RGB → YUV [YUV]=[0.2990.5870.1140.1480.2890.4370.6150.5150.1][RGB] \biggr[ \begin{matrix} Y \\ U \\ V \end{matrix} \biggr] = \biggr[ \begin{matrix} 0.299 & 0.587 & 0.114 \\ -0.148 & -0.289 & 0.437 \\ 0.615 & -0.515 & -0.1 \end{matrix} \biggr] \cdot \biggr[\begin{matrix} R \\ G\\ B \end{matrix}\biggr]

  • YUV → RGB [RGB]=[101.14010.3950.58112.0320][YUV] \biggr[ \begin{matrix} R \\ G \\ B \end{matrix} \biggr] = \biggr[ \begin{matrix} 1 & 0 & 1.140 \\ 1 & -0.395 & -0.581 \\ 1 & 2.032 & 0 \end{matrix} \biggr] \cdot \biggr[\begin{matrix} Y \\ U\\ V \end{matrix}\biggr]

  • RGB → YCbCr [YCbCr1]=[0.29900.58701.114000.16870.33130.51280.50.41870.08131280001][RGB1] \biggr[ \begin{matrix} Y \\ Cb \\ Cr \\ 1 \end{matrix} \biggr] = \biggr[ \begin{matrix} 0.2990 & 0.5870 & 1.1140 & 0 \\ -0.1687 & -0.3313 & 0.5 & 128\\ 0.5 & -0.4187 & -0.0813 & 128 \\ 0 & 0 & 0 & 1 \end{matrix} \biggr] \cdot \biggr[\begin{matrix} R \\ G\\ B \\ 1 \end{matrix}\biggr]

    • 从 RGB 到 YCbCr 通过指令 “rgb2ycbcr” 来实现
  • YCbCr → RGB [RGB]=[11.402010.344140.7141411.7720][YCb128Cr128] \biggr[ \begin{matrix} R \\ G \\ B \end{matrix} \biggr] = \biggr[ \begin{matrix} 1 & 1.402 & 0 \\ 1 & -0.34414 & -0.71414 \\ 1 & 1.772 & 0 \end{matrix} \biggr] \cdot \biggr[\begin{matrix} Y \\ Cb-128\\ Cr-128 \end{matrix}\biggr]

    • 从 YCbCr 到 RGB 通过指令 “ycbcr2rgb” 来实现

    97

  • RGB → CIE Lab

    • CIE Lab 模型 (1976 CIE 提出)
      • Lab系统是在三维坐标系统上的,基于一种对称理论,即 使用black-white L, red-green a,yellow-blue b 模块
      • 它与具体设备无关的 L=116f(YYn)16 L^{*}=116f(\frac{Y}{Y_{n}})-16 a=500[f(XXn)f(YYn)] a^{*} = 500 \cdot \biggr[f(\frac{X}{X_{n}})-f(\frac{Y}{Y_{n}})\biggr] b=200[f(YYn)f(ZZn)] b^{*} = 200 \cdot\biggr[f(\frac{Y}{Y_{n}}) - f(\frac{Z}{Z_{n}})\biggr] where,

    f(t)={t3ift>(629)3t3×(296)2+429otherwise f(t) = \biggr\{\begin{matrix} \sqrt[3]{t} & if \quad t >(\frac{6}{29})^{3} \\ \frac{t}{3}\times (\frac{29}{6})^{2} + \frac{4}{29} & otherwise \end{matrix}

    • XnX_{n}, YnY_{n}, ZnZ_{n}是CIE X,Y,Z相对于白色的参考三色值
    • RGB 模型与CLE Lab* 模型,能够通过指令"makecform""applycform"来实现
    clc;
    clear;
    imRGB = imread('../pic/7.jpg');
    figure;
    imshow(imRGB);title('原始RGB图像');
    cform = makecform('srgb2lab','AdaptedWhitePoint', whitepoint('D65'));
    imLab = applycform(imRGB, cform);
    figure;
    imshow(imLab);title('Lab模型图像');
    cform2 = makecform('lab2srgb','AdaptedWhitePoint', whitepoint('D65'));
    rgb = applycform(imLab,cform2);
    figure;
    imshow(rgb);title('Lab模型到RGB图像');
    

    98

1.3. 伪彩色处理

  • 什么叫伪彩色图像处理?
    • 也叫假彩色图像处理
    • 根据一定的准则对灰度值赋以彩色的处理
    • 区分:伪彩色图像、真彩色图像、单色图像
  • 为什么需要伪彩色图像处理?
    • 人类可以辨别上千种颜色和强度
    • 只能辨别二十几种灰度
  • 应用
    • 为人们观察和解释图像中的灰度目标
  • 怎样进行伪彩色图像处理?
    • 强度分层技术
    • 灰度级到彩色转换技术

      1.3.1. 强度分层技术

  • 把一幅图像描述为三维函数(x,y,f(x,y))
  • 分层技术:放置平行于(x,y)坐标面的平面
  • 每一个平面在相交区域切割图像函数 99
    • 令[0,L-1]表示灰度级,使l0代表黑色(f(x , y)=0), $l_{L-1}$代表白色(f(x , y)=L-1)。假设垂直于强度轴的P个平面定义为量级l1l_{1}, l2l_{2}, l3l_{3},…,lp+1l_{p+1},P个平面将灰度级分为P+1P+1个间隔,V1V_{1},V2V_{2},...,VP+1V_{P+1},则灰度级到彩色的赋值关系:
    • ckc_{k}是与强度间隔VkV_{k}KK级强度有关的颜色
    • VkV_{k}是由在l=k1l=k-1l=kl=k分割平面定义的 100 101
    • 左图难以区分病变,右图强度分层结果,清楚的显示恒定强度的不同区域。
    • 下图图像的强度值直接与降雨相对应,目测困难 102
      • 上图:蓝色表示低降雨量,红色表示高降雨量
      • 上面2个图片显得更加清楚

1.3.2. 灰度级到彩色的转换

  • 对任何输入像素的灰度级执行3个独立变换
  • 3个变换结果分别送入彩色监视器的红、绿、蓝三个通道
  • 产生一幅合成图像,matlab实现:Cat(3,R,G,B) 103

1.4. 全彩色图像处理

  • 全彩色图像处理基础
    • 全彩色图像处理研究分为两大类:
      • 分别处理每一分量图像,然后合成彩色图像
      • 直接对彩色像素处理:3个颜色分量表示像素向量。令C代表RGB彩色空间中的任意向量 C=[CRCGCB]=[RGB] C = \biggr[\begin{matrix} C_{R}\\C_{G}\\C_{B} \end{matrix}\biggr] = \biggr[\begin{matrix}R\\G\\B \end{matrix}\biggr]
    • 对大小M×N的图像 C(x,y)=[CR(x,y)CG(x,y)CB(x,y)]=[R(x,y)G(x,y)B(x,y)] C(x,y) = \biggr[\begin{matrix} C_{R}(x,y)\\C_{G}(x,y)\\C_{B}(x,y) \end{matrix}\biggr] = \biggr[\begin{matrix}R(x,y)\\G(x,y)\\B(x,y) \end{matrix}\biggr]
      • 其中:x=0,1,2,…,M-1, y=0,1,2,…,N-1.
  • 彩色变换函数g(x,y)=T[f(x,y)]g(x,y) = T[f(x,y)]
    • f(x,y)f(x,y)是彩色输入图像,$g(x,y)$是变换或者处理过的彩色输出图像,TT是在空间领域(x,y)(x,y)上对ff的操作
    • 彩色变换的简单形式
      • Si=Ti(r1,r2,...,rn)S_{i}= T_{i}(r_{1}, r_{2},..., r_{n}) ,其中i= 1,2,...,n。rir_{i}SiS_{i}f(x,y)f(x, y)g(x,y)g(x, y)在任何点处彩色分量的变量
      • {T1,T2,...,Tn}\{ T_{1},T_{2},...,T_{n}\} 是一个对 rir_{i}操作产生的变换或彩色映射SiS_{i}函数集
      • 选择的彩色空间决定n的值,如RGB彩色空间,n=3,r1r_{1},r2r_{2},r3r_{3}表示红、绿、蓝分量;CMYK,则n=4。

1.5. 彩色图像平滑和锐化

  • 彩色图像平滑

    • SxyS_{xy}表示在RGB彩色图像中定义一个中心在(x,y)的邻域的坐标集,在该邻域中RGB分量的平均值为表示在RGB彩色图像中定义一个中心在c(x,y)=1k(x,y)Sxyc(x,y)\overline{c}(x,y) = \frac{1}{k}\sum_{(x,y)\in S_{xy}}c(x,y)

    c(x,y)=[1K(x,y)SxyR(x,y)1K(x,y)SxyG(x,y)1K(x,y)SxyB(x,y)] \overline{c}(x,y) = \biggr[ \begin{matrix} \frac{1}{K}\sum_{(x,y)\in S_{xy}}R(x,y)\\ \frac{1}{K}\sum_{(x,y)\in S_{xy}}G(x,y)\\ \frac{1}{K}\sum_{(x,y)\in S_{xy}}B(x,y) \end{matrix} \biggr]

# RGB -> HSI
fc  = imread('../pic/lema.png');
figure;
subplot(221);
imshow(fc)
title('原始真彩色(256*256*256色)图像')
fr = fc(:,:,1);
fg = fc(:,:,2);
fb = fc(:,:,3);
subplot(222);
imshow(fr);
title('红色分量图像');
subplot(223);
imshow(fg);
title('绿色分量图像');
subplot(224);
imshow(fb);
title('蓝色分量图像');
h = rgb2hsi(fc);
H = h(:,:,1);
S = h(:,:,2);
I = h(:,:,3);
figure;
subplot(221);
imshow(h);title('HSI图像');
subplot(222);
imshow(H)
title('色调分量图像');
subplot(223);
imshow(S);
title('饱和度分量图像')
subplot(224);
imshow(I);
title('亮度分量图像');
# 彩色图像平滑
w = fspecial('average',15);
I_filtered = imfilter(I,w,'replicate');
h = cat(3,H,S,I_filtered);
f = hsi2rgb(h);
% f = min(f,1);
figure;
imshow(f);
title('仅平滑HSI图像的亮度分量所得到的RGB图像')
fc_filtered = imfilter(fc,w,'replicate');
figure;
imshow(fc_filtered)
title('分别平滑R、G、B图像分量平面得到的RGB图像');
h_filtered = imfilter(h,w,'replicate');
f = hsi2rgb(h_filtered);
f = min(f,1);figure;
imshow(f)
title('分别平滑H、S、I图像分量平面得到的RGB图像')
h_filtered = imfilter(h,w,'replicate');
figure;
imshow(h_filtered);
title('分别平滑H、S、I图像分量平面得到的HSI图像');

1.5.1. 彩色图像锐化

  • RGB彩色空间,分别计算每一分量图像的拉普拉斯变换 [c(x,y)]=[2R(x,y)2G(x,y)2B(x,y)] \nabla [c(x,y)] = \biggr[\begin{matrix} \nabla^{2}R(x,y)\\\nabla^{2}G(x,y)\\\nabla^{2}B(x,y) \end{matrix}\biggr] g(x,y)=f(x,y)2f(x,y)=5f(x,y)[f(x+1,y)+f(x1,y)+f(x,y+1)+f(x,y1)] g(x,y)=f(x,y)- \nabla^{2}f(x,y) = 5\cdot f(x,y)- \biggr[f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)\biggr]
    fc  = imread('../pic/2.jpg');
    figure;
    subplot(231);
    imshow(fc);
    title('原始真彩色(256*256*256色)图像');
    w = fspecial('average',15);
    fc_filtered = imfilter(fc,w,'replicate');
    subplot(232);
    imshow(fc_filtered)
    title('分别平滑R、G、B图像分量平面得到的RGB模糊图像')
    lapmask = [1 1 1; 1 -8 1; 1 1 1];
    fen = imsubtract(fc_filtered,imfilter(fc_filtered,lapmask,'replicate'));
    subplot(233);
    imshow(fen);
    title('用拉普拉斯算子增强模糊图像')
    LPA = imfilter(fc,lapmask,'replicate');
    subplot(234);
    imshow(LPA);
    title('对原始真彩色图像用拉普拉斯算子提取出的图像')
    fen = imsubtract(fc,imfilter(fc,lapmask,'replicate'));
    subplot(235);
    imshow(fen);
    title('用拉普拉斯算子增强原始真彩色图像(采用提高边缘亮度手段)');
    
    107
Copyright © ZHOUWEN all right reserved,powered by GitbookLatest updated: 2022-05-01 16:12:40

results matching ""

    No results matching ""