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Abstract
One of the most common solutions for the prevention of fire accidents is to
conduct extensive fire evacuation drills in crowded places. However, there are
multiple salient advantages to using virtual reality technology to simulate emer-
gency solutions, for instance, saving costs and greatly decreasing uncertain risks
or accidents. Therefore, in this article, a multiagent evacuation framework for
complex virtual fire scenarios is proposed and effectively used to simulate a mul-
tiagent evacuation procedure to approximate the goal of fire drills in a less costly
manner. Specifically, the concept of a multihierarchy agent group model is pro-
posed; that is, the evacuation of multiple agents is separated into leader-follower
and freedom modes. Additionally, several complex actions of individual humans
in actual fire drills are fully considered, and a multiaction agent schema is
presented to characterize the associated real effects. In addition, generative
adversarial imitation learning is adopted to obtain the evacuation path of the
leader-agent by training numerous learning epochs. Finally, extensive experi-
ments are conducted to validate the feasibility of our proposed method. The
results show that the proposed method is superior to other methods and that
it realistically and reasonably shows the procedure of multiagent evacuation in
complex fire emergency scenarios.
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1 INTRODUCTION

In many crowded places, such as university dormitories, shopping malls, and supermarkets, fire drills are commonly
used to prevent fire accidents. However, these drills often face a series of problems, such as formality, the high cost of fire
simulation, and potential unexpected accidents leading to casualties, that greatly limit the scale of fire drills and disrupt
the actual objective of the exercise.

In recent years, the development of virtual reality technology has provided a new effective solution for fire preven-
tion plans via virtual fire drills, which have multiple advantages, including low cost, small accident risk, simple scheme
switching, and so on. Therefore, in virtual scenes, the modeling and simulation of evacuation crowds have gradually
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become an active research area in which the effective means of evacuation behavior in fire emergencies can be repro-
duced and forms the basis for the study of crowd behavior. In practice, the evaluation of evacuation ability, the formulation
of emergency plans and emergency decision making have great significance in safety management. To a certain extent,
crowd evacuation behavior can be realistically simulated to viably reduce the risk of fire to evacuees.1 There have been
several hundreds of studies on crowd evacuation. In particular, multiple evacuation models have been presented to sim-
ulate evacuation behavior in various emergency conditions, such as social force models, cellular automata models, fluid
dynamics, and agent-based models. These models have been successfully widely used in many crowd evacuation sim-
ulations. Although the majority of these models are from the perspective of individuals, they plan the path for each
individual. More importantly, the number of calculations that these models utilize is usually very large; thus, the simula-
tion of large-scale crowd evacuation is more difficult.2 In addition, in an actual large-scale complex environment, when
emergency accidents occur, people are prone to chaos, which leads to crowd congestion and results in huge losses, even
casualties. Therefore, we attempt to build an emergency evacuation model to conduct drills or exercises in a large-scale
complex virtual scenario, which decreases the chaos confronted in an actual emergency and helps people become famil-
iar with the evacuation schema of a disaster scenario accumulate the necessary experiences and account for most key
human behavior factors while ensuring the computability of the approach; this approach is of great significance to
ensuring safety.3

Therefore, this article proposes a multiagent evacuation framework to escape fires occurring in large-scale scenes,
which is used to simulate the process of crowd escape from disaster scenes. The main contributions of this article are as
follows.

1. Two kinds of multiagent evacuation models are proposed, that is, leader-follower and freedom modes. Thus, there are
two different agent escape processes, which avoids excessive emphasis on the relationship between agents, namely,
agents absolutely trust or absolutely distrust other agents; in this way, the behavior of virtual agents approaches that
of actual evacuees.

2. Two different kinds of agent behavior models are proposed. In fact, for an evacuee, there are many different evacuation
behaviors, such as runs, walks, and sprints. Therefore, in this article, two kinds of agent behaviors are used, namely,
runs and walks, to better simulate evacuees in disaster emergency scenarios.

3. Generative adversarial imitation learning (GAIL) is adopted to obtain the evacuation path. Specifically, when trained in
long epochs and unceasingly interacting with virtual scenarios, the agent can intelligently achieve obstacle avoidance,
reduce the online computing time, and effectively reach the destination safely.

2 RELATED WORKS

2.1 Leader-follower model

In the process of evacuation, not all individuals know the exact evacuation route. Therefore, their behaviors are not
only based on their own ideas but are also greatly influenced by the people around them. Clearly, their own evaluations
and behaviors are often easily influenced by group behaviors. Most people exhibit a prominent herd mentality in an
emergency; few people choose to act alone, and most evacuees prefer to follow others in a submissive manner. In an
emergency event, numerous familiar individuals always gather tightly together and follow a trustworthy individual to
move, which is termed social force.

Many studies4–8 have shown that the efficiency of individual evacuation under guidance is higher, that is, the
leader-follower mode. In fact, the leader-follower mode represents reality well. Therefore, it is particularly important to
consider group behavior during a crowd evacuation simulation.

Pelechano and Badler9 developed a two-level model to simulate leader behavior in maze evacuation scenarios. The
optimal ratio of trained leaders to evacuees and the influence of escape information transmission on evacuation were
studied; however, it took a large amount of time to compute the optimal ratio of leaders in crowds. Qiu and Hu10 pro-
posed a new well-defined group structure modeling framework, and an agent-based simulation system was designed to
simulate crowd behavior with a group structure. However, they considered only whole group structures in crowd sim-
ulations and did not focus on any special individual evacuations, that is, lonely evacuation. In References 11 and 12,
the social power model was proposed to explore the influence of leader number and position on evacuation dynam-
ics in a limited visible range. Moreover, another study13 demonstrated the necessity of leaders and the influence of the
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number and spatial location of leaders during an evacuation. Clearly, these studies sufficiently show that the
leader-follower model greatly influences the efficacy of the evacuation process. Zhang et al.14 proposed an improved
two-level social force model to simulate and reproduce the group aggregation process. Certainly, their most important
purpose was to better simulate the process of forming the leader-follower model in crowds. Additionally, in Reference 15,
an improved social force model in which people are grouped according to social relations, was proposed,. In this process,
group members are attracted by leaders to ensure that each individual follows the leader. For some complex scenes, such
as reciprocal velocity obstacles in scenarios, Juniastuti et al.16 divided the role of crowds into two parts, namely, leaders
and followers. In the evacuation process, group behavior based on the leader-follower model was successfully completed.
This showed that the leader-follower model is suitable for evacuation simulation in complex scenarios. Subsequently, Li
et al.17 presented an evacuation process tracking model. Specifically, the dynamic Douglas–Peucker algorithm was used
to extract global key nodes from dynamic partial routing. Moreover, this study considered a primary school as an example
to simulate the evacuation process of students following the teacher. The efficacy of the leader-follower model was found
to be robust for several complex emergency scenes. In addition, in rail transit station evacuation scenarios, Zhou et al.18

proposed a hybrid bilevel model to optimize the number and initial positions of leaders in the evacuation process and
the paths of leaders in the evacuation process. However, these methods utilized only a single leader-follower model to
complete the crowd evacuation simulation in different scenes. In fact, there existed some lonely evacuees; thus, to main-
tain the verisimilitude of simulation, the crowd diversity should be fully considered. In the present article, we propose
two different models to simulate the evacuation process, that is, a leader-follower model and a free model, to attempt to
maintain the diversity and reality of crowd evacuations.

2.2 Several different evacuation model methods

To date, due to the lack of data from real evacuation, many phenomena and laws in the interaction between evacuees and
their environment can only be represented by modeling.19 To explore the behavior characteristics and movement rules
of crowd evacuation during an emergency, various models have been proposed, such as agent-based models,20 cellular
automata models,21 flow-based models,22 fluid dynamics models,23 gas dynamics models,24 particle system models,25 and
social force models.26

Recently, agent-based model technology has been widely adopted to study crowd evacuation in various situations.
In practice, this usually requires a higher computation cost than cellular automata and particle systems. However, this
approach allows and encourages each individual to have the ability to act independently. As a result, it becomes eas-
ier to model different individuals in more diverse scenes.27 Specifically, Wagner and Agrawal28 proposed an agent-based
crowd evacuation simulation system to simulate crowd evacuation in the case of fire disasters. In addition, they studied
the evacuation performance in a variety of disaster scenarios. In this simulation system, each individual is an inde-
pendent individual that remains in an independent state rather than forming a group. The advantage of this method
is that it is suitable for various scenes. Furthermore, Shimada et al.29 developed a simulation system to optimize the
sign system design of large-scale public facilities by using an agent-based model to simulate pedestrian movement
under the influence of signs. Fu et al.30 obtained better results by integrating multiagent and cellular automation mod-
els. In Reference 31, a multiagent simulation collision avoidance system in a complex environment was proposed,
and its application to crowd evacuation behavior was presented. Additionally, a computation framework to simulate
human and social behaviors for egress analysis was presented by Pan et al.;32 the MASSEgress system was proposed
to conduct simulation based on K-Means clustering analysis; however, the number of agents is less than 100, and
it mainly aimed to simulate indoor scenarios, such as train stations, buildings, and so forth. Zheng et al.33 system-
atically summarized crowd evacuation models based on seven methodological approaches, and the advantages and
disadvantages of these approaches were discussed. Chu and Law34 proposed a multiagent-based simulation frame-
work that incorporates human behaviors; this method also aimed to simulate indoor scenarios; it only considers
the effect of social behaviors on the agent egress evacuation, but does not harness the individual agent scenario
decision.

Multiagent models have gradually become one of the most widely used models. Compared with other model methods,
these models have several salient advantages: first, they can better handle the interactions between people in the real
world; second, they allowing modeling for each individual agent.

In addition, with reinforcement learning methods rapidly developing and milestone achievements being obtained in
several important areas, such as Go, this approach is gradually being used to solve the emergency evacuation problem.
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For example, Zheng and Liu35 proposed the agent path plan method based on the deep deterministic policy gradient
(DDPG), which can effectively obtain an optimized path to evacuate by lasting learning in continuous observation space.
However, this approach is not suitable for multiagent scenarios. Wang et al.36 proposed an improved method by inte-
grating DDPG learning methods37 and a social force model to complete path plans. However, this method was found to
be unsuitable for large-scale scenarios; above all, it continuously consumes memory and always takes a very large time
to compute.

Recently, there have been multiple remarkable breakthroughs in generative models based on deep learning. Above
all, a new generative model called generative adversarial networks (GANs) addressed the inherent difficulties of deep
generative models associated with intractable probabilistic computations in training. GANs employed an adversarial dis-
criminator to distinguish whether a sample is from real data or from synthetic data generated by the indicated generator.
Specifically, the competition between the indicated generator and the powerful discriminator was designed as a minmax
game. Moreover, GAIL, which was proposed by Ho and Ermon,38 utilized a combination of the inverse reinforcement
learning (IRL) idea that learns the experts’ underlying reward function and the schema of the generative adversarial
framework. Indeed, GAIL has been adopted in multiple literatures, such as, Song et al.,39 Choi et al.,40 and Chi et al.41.

As above mentioned, in this present article, we adopt the GAIL method to gain a suitable evacuation path; further-
more, the leader-follower model and free model are utilized to simulate the evacuation process of multiple agents.

3 PROPOSED FRAMEWORK

In this section, as Figure 1 shows, an overview of the proposed framework is presented. Our proposed frame-
work is composed of three parts; that is, virtual disaster scenario generation, and the multiagents form a related

F I G U R E 1 Overview of the proposed multiagent evacuation. The framework consists of three parts, that is, the create emergency
scenario. A related model is generated from multiple agents, and the GAIL approach is used to train the related evacuation path
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structure. Specifically, the agent grouping approach is considered to obtain a leader-follower model; moreover, to maintain
reality and diversity, some lonely agents exist, that is, agents based on a free model. In addition, two different agent behav-
ior modes are considered to better simulate the evacuation process of evacuees, specifically, the run agent and walk agent.
In addition, by using sufficiently long training epochs, we can easily ensure that leader agents and lonely agents find the
most suitable path to escape based on GAIL methods. In addition to leader agents and lonely agents, for many follower
agents, because they follow the leader agent only, they do not need to gain evacuation paths themselves (in essence, most
of the existing agents belong to the follower-agent type). Thus, the whole calculation of the evacuation is not very large;
moreover, this approach aims to maintain the reality of virtual evacuation scenes.

In the following section, the details of the proposed framework are described.

4 FRAMEWORK DESCRIPTION

4.1 Agent grouping approach

As mentioned above, the leader-follower model can effectively simulate the process of actual scenes. In this section, we
propose a belief value agent grouping approach. In addition, we assume that the trustworthiness and knowledge of an
agent are closely related to the agent’s distance from the egress.

Definition 1. The global trust value of Γi of agent i th ai: The trustworthiness of agent ai in the current scene is
determined by the distance Di to the escape target (exit) and the knowledge Ki. The equation of Di is shown in Equation (1).

Di =
min

G
d(ai,G) − min

0≤j≤N
{min

G
d(aj,G)}

max
0≤k≤N

{min
G

d(ak,G)} − min
0≤j≤N

{min
G

d(aj,G)}
. (1)

In this equation, the term G is the goal position set of the evacuation, that is, the exit (in most cases, there are probably
multiple exits). Moreover, the function d(ai,G) represents the Euclidean distance set between the position of agent ai and
the set G.

The knowledge Ki of the ith agent ai is shown in Equation (2).

Ki =
1

2𝜋𝜎x𝜎z
e
− (x−𝜇x )2

2𝜎2
x

− (x−𝜇z )2

2𝜎2
z . (2)

Clearly, for multiagents A = {a0, … , aN−1}, the terms 𝜎x, 𝜎z, 𝜇x, 𝜇z are represented as the variance and mean of the
initial position in the X- and Z-axis directions, respectively. Ki ∈ [0, 1]; therefore, the equation of the global trust value Γi
of the ith agent ai is denoted in Equation (3):

Γi = 𝛼Di + (1 − 𝛼)Ki. (3)

The number of leader agents depends on the number of agents in the scenario. In general, the greater the number
of agents, the more leader agents are likely to be created to simulate a realistic scenario. Intuitively, this is likely to be
consistent with realistic drill scenarios. However, when every leader agent seizes its own evacuation path, too many leader
agents will probably also lead to more congestion. In such cases, the agent evacuation may often be greatly delayed; as a
result, it takes multiple agents more time to complete the evacuation task. Indeed, with the increasing of the agents, the
number of leader agents probably becomes constant. Hence, to appropriately simulate realistic occasions, in this article,
we do not consider of the situation in which there are too many agents (i.e., N > 1000).

Then, the number of leader agents n in the scene is computed as shown in Equation (4).

n =
⎧⎪⎨⎪⎩
𝜃 × N

u
if N ≤ 10 × u,

𝜑 × N
v
+ 𝜏 if 10 × u < N ≤ 10 × v,

0 otherwise.

(4)
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Here, the term N is the number of agents in the scenario. Theoretically, 𝜃 and 𝜑 present the ratio of leader
agents in the respective scene; in addition, the term 𝜏 is understood to represent the minimum number of
leader agents. Through the relative experiment, when the number of agents N ≤ 1000, 𝜏 = 3, 𝜃 = 0.5, 𝜑 = 0.5,u =
10, v = 10, the best effect is achieved. Additionally, the various agents are uniformly generated in the initialization
phase.

For agents A (|A| < 1000), ∀ai, and its trust value Γi,we assume that the term L represents n leader agents.
Consequently, the remainder of agent rj ∈ R = A − L and its trust value tjk to leader agent lk ∈ L (local trust value)

can be denoted by Equation (5):

tjk = 𝛽 × 1
d(rj, lk)

+ (1 − 𝛽) × H, (5)

where the variable H is a random value, that is, H ∈ [0, 1]; specifically, this disturbance factor prevents the local trust
values from being too concentrated, which often leads to overfitting.

In addition, to a certain extent, the agent rj grouping depends on the local trust degree and threshold value 𝜍, which is
mainly used to maintain the diversity of agents; that is, in reality, some existing agents form a free mode to escape without
a leader agent. This is shown in Equation (6).

Θj =

{
argmax({tjk > 𝜍|tjk}) if ∃tjk > 𝜍,

− 1 otherwise.
(6)

Finally, for each group, the term Θj uses the k-means algorithm to update the relationship between agent rj and
the leader lk, that is, it is harnessed to decide whether or not the agent rj followed lk. Furthermore, the agent grouping
algorithm is shown as follows in Algorithm 1.

4.2 Agent behavior selection

To simulate the escape process of multiple agents more realistically, it is very important to control the behavior of the
agent. As Figure 2a shows, the behavior set of agent Φ = {i ∈ [0, 2]|wi} indicates that the behaviors of the agents consist
of the standing, walking and running states. Clearly, the velocity V (metric units is m/s) of the agents corresponds to the
behavior set.

In an actual fire drill, in the process of crowd escape and evacuation, some participants in the drill have differ-
ent postures, such as running and walking (as shown in Figure 2b). Maintaining the multiple behaviors of agents
increases the fidelity and authenticity of virtual reality. Therefore, this article proposes a multiagent behavior selection
method.

F I G U R E 2 Overview of agent behavior selection. (a) There are three different behaviors. (b) In an actual campus drill, from a snapshot
of a video, there are two different evacuation behaviors. (c) Agent behavior selection is used in the virtual scenario
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Algorithm 1. Agent grouping algorithm

Input:Leader agent set L; remaining agent set R
Output:L, follower agent set F; free agent set T
1: F ← ∅,T ← ∅
2: for doli ∈ L
3: Fi ← ∅
4: for dorj in R
5: According to Equation (6), Θj is computed.
6: if thenΘj == i
7: Fi ← rj.
8: else
9: T ← rj

10: end if
11: end for
12: F ← Fi
13: end for
14: for dolk ∈ L
15: Compute the average distance Δk between lk and Fk.
16: for doai ∈ Fk
17: Compute the average distance Δik between Fk and ai.
18: Compute the distance Δi0 between ai and lk
19: Compute Δi =

Δik+Δi0
2

20: if thenΔi<Δk
21: ai ←→ lk
22: end if
23: end for
24: end for

Definition 2. Density of agents: the number of agents in the fixed neighborhood 𝛿+ of a collision point. Then, the steps
of the agent behavior selection method are listed as follows:

Step 1: Initialize the behavior state of N agents, ∀ agent ai, while its behavior state Φ(ai) = standby; then, V(ai) = 0.
Step 2: The behavior state of multiple agents is preprocessed, and a random number 𝜌[0, 𝜃] is generated randomly. If 𝜌

equals 0, Φ(ai) = walking. Otherwise, Φ(ai) = run. In this article, the parameter 𝜃 = 9.
Step 3: Preprocessing the behavior of leader agent li. To maintain the leader agent’s leadership effect, the behavior of the

leader agent li has to be set so Φ(li) = run.
Step 4: When ∃ agent ai (ai ∉ L),density(ai) ≥ 𝜖, and Φ(li) = run, then Φ(li) = walk.

Actually, for agent ai, its velocity Vi at timestamp tth satisfies Equation (7), as follows:

Vi =
⎧⎪⎨⎪⎩

0 if Φ(ai) = standby,
v0 + Ψ if Φ(ai) = walk,
v′0 + Ψ′ otherwise,

(7)

where the variables v′0 and v0 represent the initial speed in the run state and walking state, respectively. In this article, we
set the velocities v′0 = 1.0 m/s, v0 = 0.9 m/s, respectively. Additionally, the terms Ψ′ and Ψ represent the accelerated speed
of the current agent in its own state. Furthermore, the accelerated speed is usually limited by two factors, namely, the
amount of knowledge of the current agent (see Equation 2) and the density of the agents (see Definition 2). In addition,
the accelerated speed Ψi of agent ai is shown in Equation (8).
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Ψi = max{0, 𝜇 × Ki − f (Δ(ai) − 𝜖)}. (8)

Here, the term 𝜖 = 5 refers to the experiment value used in this article. Additionally, the functionΔ denotes the density
of agent ai within a unit area, that is, how many agents are in a unit area. Obviously, the term 𝜖 represents the common
number of agents in a unit circle centered on agent ai, including the agents in four different directions and the agent ai. If
the behavior state of agent ai is in the walking state, that is, Φ(ai) = walking, then 𝜇 = 1.5; otherwise, 𝜇 = 2.0. In addition,
the function f is an activation function, which is denoted as Equation (9):

f (x) = min{max(0, x), 1}. (9)

To ensure that the agent maintains a certain acceleration, for agent ∀ ai, Ψ′ is greater than 0, and the value is set as
shown in Equation (10).

Ψ′
i = max(0.1,Ψi). (10)

4.3 Agent path planning based on GAIL

The target of GAIL is to obtain rewards from the existing expert policy 𝜋E and then train the GAN to obtain an approximate
policy. Therefore, it is very import that expert policy𝜋E is obtained; unfortunately, currently, no open expert data are
available. For this reason, we collect the expert policy process based on fire drills in campus videos, and then the result is
saved in csv format files.

Specifically, the generator network (G) is utilized to obtain an approximate expert policy, that is, the foremost role of
the generator is to create realistic synthetic trajectories; subsequently, the discriminative classifier network (D) is trained
to obtain suitable parameters based on the mini-batch stochastic gradient descent (SGD) optimizer. More specially, the
discriminator (D) attempts to solve the classification problem by distinguishing real expert trajectories from generated
trajectories.

Indeed, the generator network (G) consists of a policy function network and value estimator network, and the dis-
criminator (D) is comprised of a discriminator network; moreover, for the discriminator (D) , a primary target is to output
the reward value R(st, at) of the synthetic trajectory (st, at), which serves to bring the training value network to conver-
gency through a multiple iteration roll-out. In other words, the generator (G) works as a reinforcement learning agent to
produce the policy function and value estimator, whereas the discriminator works as an IRL representative to obtain a
related reward of the synthetic trajectory of state st and action at. Furthermore, by applying the policy steps, the related
cost function is adopted based on mini-batch SGD to obtain a series of approximate policies. An overview of GAIL is
intuitively summarized in Figure 3.

In reinforcement learning, a value function Q𝜋(st, at) is often used to figure out the expected return of the actions at at
the current state st. In particular, the expected return, or the estimated value, which is created by the value estimator (i.e.,
the value network), is used as a coefficient when updating the policy generator. Moreover, the value network is trained
to minimize the value objective loss function Jvalue, which is defined as Equation (11):

Jvalue = E{[Q𝜋(st, at) − (R(st, at) + 𝛾E(R(st+1, at+1)) + 𝛾2E(R(st+2, at+2)) + · · · )]2}

= E{[Q𝜋(st, at) − (R(st, at) + 𝛾
∑

𝜋(at+1|st+1))Q(st+1, at+1)]2}, (11)

where the term 𝛾 is the actual discounted value. Additionally, the term R(st, at) is the reward value from the output of
the discriminator network (D). Meanwhile, by taking a series of policy steps 𝜃, the objective of the policy update is to
maximize the expected cumulative reward function; hence, the loss function Jpolicy of the policy network maximized the
policy objective to enhance the policy generator at every iteration. Therefore, the policy network is increasingly updated
to maximize the loss function Jpolicy with the related gradient as Equation (12) shows:

▽𝜃Jpolicy(𝜃) = Êri

[
▽𝜃 log𝜋𝜃(a|s)Q(s, a)

]
− 𝜆▽𝜃H(𝜋𝜃)

]
,

Subjected to : Q(s, ā) = Êri[log(Dw+1(s, a))|s0 = s, a0 = ā], (12)
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where the term ri is the reward in ith timestep, and 𝜃 is the parameters of the policy network. Additionally,
among the below-constrained equation, the term w is the parameters of the discriminator (G), and these terms
s, a, s, ā represent the state of the action of the current timestep and the state of the action of the next timestep,
respectively.

Indeed, as the generator is improved to produce more realistic trajectories, the discriminator’s ability to classify the
generated trajectories from the real trajectories is also significantly improved through iterative parameter updates and
fine-tuning. In essence, this competition between the two neural networks (G and D) is the fundamental concept of the
generative adversarial learning framework. In particular, for every update step of the discriminator, the samples from
the real trajectory dataset (i.e., expert data) are labeled as 0, by comparison, the samples from the generator are labeled
as 1. Therefore, for both expert and generated trajectories, we put the sequence observation and the action taken at the
last observation as an input, process the sequence of observation into a belief state by a multilayer perceptron (MLP)
embedding layer, and calculate the probability (Dw(s, a)) that the given sequence of observations and the action are from
the generator (G).

Clearly, for the discriminator D and the expert policy 𝜋E, the parameters of the discriminator are increasingly updated
to minimize the binary cross-entropy loss. The w-parameterized discriminator is updated to minimize the discriminator
loss function Jdiscri, with the following gradient, as Equation (13) shows:

▿wJdiscri = Êri[▿w log(Dw(s, a))] + ÊrE [▿w log(1 − Dw(s, a))]. (13)

On the other hand, the discriminator (D) generally provides the training signal to the generator (G) through the
reward function (R(st, at)), as shown in Figure 3. In comparison, the generator (G) is always trained to achieve the target of
maximizing the binary cross-entropy loss of the discriminator (D). In fact, the parameters of the generator (G) are closely
related to the first term of Equation (13), that is, the primary objective of the generator (G) is to maximize the first term
of Equation (13). As a result, the reward function can be easily represented in Equation (14), as follows:

R(st, at) = − log(Dw(s, a)). (14)

F I G U R E 3 Overview of the framework of generative adversarial imitation learning. Specifically, the target of the training process is to
make each network (including the value network, policy network, and discriminator network) reaches convergence. In this case, the output
policy based on such a convergent policy network can obtain maximization of the value function
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5 EXPERIMENTS

5.1 Setting the experiment environment

To validate our proposed framework, we set the related experimental environment, including a virtual fire scenario, 3D
model actors (agents), several obstacles (buildings, cars, trees), and two evacuation exits (two safety exits). Specifically,
we assume the scenario to be a campus where fires occur in dormitories. In addition, the 2D plane of the virtual campus
is shown in Figure 4. Furthermore, the configuration of the computer is shown in Table 1.

Additionally, in this article, for the value estimator network, policy network, and discriminator network, the same
network structure is adopted, that is, multilayer perceptron (MLP) with two hidden layers. Additionally, the primary
parameters of GAIL are shown in Table 2.

F I G U R E 4 2D plane of the virtual environment. The orange and red bars are the obstacles, and the blue blocks denote the dormitories
struck by fire accidents. In addition to these, there are two safety exits

T A B L E 1 Main configuration of the computer

Operation system Windows 10

Processor Intel Pentium Dual Core I7

Graphics card NVIDIA GeForce GTX 1060

Memory 32 GB

ML framework Tensorflow 2.4

Physic engine Unity 3D
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T A B L E 2 Main configuration of the presented GAIL
network

Config Value

Training epochs 100,000

Size of expert batch 2000

Learning rate 1e−4

Network Two-layer perceptron [256, 256]

Optimizer Adam

F I G U R E 5 Set the number of agents for the evacuation environment in the beginning timestep

5.2 Results and analysis

According to the above experimental environment, we have completed the related experiments, including a multiagent
obstacle avoidance experiment, a leader-follower model, an agent path planning based on the GAIL network (hereinafter
referred to as the L-F model), and an agent behavior choice test. In addition, as an important criterion, the evacuation
time of existing agents is used for quantitative analysis to verify the feasibility of our proposed method.

In the beginning, while the number of agents is inputted, a given number of agents are effectively generated to com-
plete the creation of the virtual scenario. Figure 5 shows the beginning evacuation scenario that awaits the inputting of
the number of agents.

Furthermore, Figure 6 shows the automatic obstacle avoidance process of multiple agents based on the GAIL training
model, which can greatly save online calculation time in comparison to a traditional plan algorithm, such as the A*
method. Moreover, the planning path of a leader agent is shown, as are various follower agent movement trajectories in
L-F mode. In addition, in Figure 7, the paths of multiple leader agents are shown to more intuitively present the evacuation
trajectory of agents in L-F mode and to verify the feasibility and robustness of the agent behavior selection approach, that
is, that this behavior is reasonable and that walking and running agents exist. In fact, in the actual scene of a fire drill,
there are several different crowd behaviors, namely, walking evacuees and running evacuees. To maintain verisimilitude,
it is necessary to keep two different evacuation behaviors in the scenario.

The left part of Figure 8 shows the escape process of the agent in the complete walking state (ideal state), whereas
the right part of Figure 8 shows the escape process of the agent in the mixed state (closer to reality). To quantitatively
analyze the evacuation process of the existing agents, we use the evacuation time as the evaluation criterion. In the real
scene, there is less escape time without considering casualties, which means that the exercise plan is better. Nevertheless,
because the initial position of the agent is randomly generated in our experiment, there are some errors in the experiment,
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F I G U R E 6 Smartly avoid obstacles, and show a leader agent’s path (blue line)

F I G U R E 7 Several leader agent evacuation paths based on the L-F grouping schema

F I G U R E 8 Comparison between agents with walking behavior and blending behaviors (running and walking) in the scenario
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T A B L E 3 Evacuation time comparison between different agent grouping
schema (unit is seconds)

Number of agents Free mode L-F mode Blended mode

50 64.01 66.5 59.17

100 68.16 69.35 63.89

200 79.05 109.88 69.36

300 97.81 227.61 66.54

400 131.94 270.71 134.13

F I G U R E 9 Evacuation time comparison between different agent grouping schema

T A B L E 4 Evacuation time comparison between different behavior schema (unit is seconds)
Number
of agents

Running
behavior

Walking
behavior

Blending
(𝜽 = 1)

Blending
(𝜽 = 4)

Blending
(𝜽 = 9)

50 57.68 70.14 66.91 74.1 59.17

100 58.97 78.72 78.37 71.13 63.89

but this does not affect the overall results. Hence, the experimental results do not consider the error caused by the random
position of the agent.

Table 3 shows the evacuation time of 50–400 agents under different grouping strategies. In the blended mode, there
are certain advantages in evacuation time; the results are in line with the real scene.

Moreover, Figure 9 shows the comparison of the evacuation time of the above different agent groups. The blended
mode is probably the best scheme under the evacuation time indicator. In Step 2 of Section 4.2, the running and walking
behavior selections of agents are heavily determined by the parameter 𝜃. Specifically, the larger 𝜃 is, the fewer walking
agents exist. In our experiment, we take 𝜃 = 1, 𝜃 = 4, and 𝜃 = 9 to represent 50%, 20%, and 10% of walking agents, respec-
tively (to maintain the existence of the L-F mode, for the leader agents, we assume that their behavior consists of running
to maintain the leader position). In addition, we compare the differences in the evacuation time between running agents
and walking agents (except for leader agents). The results are shown in Table 4 and Figure 10. Figure 10 shows that when
𝜃 = 9, the evacuation time is very close to that of the state when all agents maintain the running behavior mode. Objec-
tively, such a case is associated with both a lower attempted evacuation time and a priority on the relative authenticity of
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F I G U R E 10 Evacuation time comparison between different action schema when the numbers of agents are 50 and 100

the scenario. Subsequently, we conduct further experiments on agent grouping. In the previous experiments, we showed
that the best results are based on the blended grouping. However, how to effectively divide the L-F mode and free mode is
the object of our following experimental evaluation. In Equation (6), we utilize the threshold value 𝜍 to control the ratio
of the two modes. As Table 5 shows, we set the evacuation time in the range of 𝜍 from 0.1 to 1. The smaller 𝜍 is, the more
agents in the L-F mode are in the blended mode. Interestingly, when 𝜍 = 1, the blended mode is close to the completed
free mode, whereas when 𝜍 = 0, the blended mode is close to the completed L-F mode.

Figure 11 shows the evacuation time of 200 agents under different threshold values 𝜍. When 𝜍 = 0.4, the blended
mode is likely to approximate the best result because the evacuation time is smallest. Indeed, these agents in the L-F

T A B L E 5 Evacuation time comparison between 10 different values of threshold 𝜍 when the number is 200 (unit is seconds)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

118.13 92.9 82.27 78.94 84.27 85.19 91.83 81.72 82.7 82.46

F I G U R E 11 Evacuation time comparison between ten different values of threshold 𝜍 when the number is 200
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mode are too concentrated, so congestion may occur; almost certainly, the evacuation time is affected. Nonetheless,
too many agents in free mode means that more calculation workload and inference of the planning path based on the
GAIL training model are needed, which also delays the evacuation time to some extent. Therefore, 𝜍 = 0.4 produces the
best results.

Moreover, Figure 12 shows the result of GAIL training. There are three indicators, that is, entropy, loss, and cumulative
reward based on the environment. The training epoch of GAIL is ten million to make the agent in any place find the best
path and avoid related obstacles.

To validate the superiority of path plan schema based on GAIL with traditional methods, such as the A* method, time
consumption is utilized as an indicator, and the result is shown in Figure 13. Figure 13 intuitively shows that regarding
the comparison result, it is not difficult to draw a deterministic conclusion that the GAIL method obtains a superior
result to the traditional A* method; while the population size of agents is less than 100, the average computation time
using the A* method is relatively shorter. The reason can be summarized as follows: agent congestion plays a role in
the evacuation process. Specifically, when the number of agents is few, agent congestion does not easily occur or its
scale is small; in this case, as a distance optimization A* method, there may be a certain advantage. Nevertheless, when
the population of agents becomes large enough, the agent congestion situation has to be considered; in this manner, the
average computation time is certainly affected by such congestion. Figure 14 shows the agent evacuation process of the
virtual scene, which can be seen in the main different stages of the emergency evacuation exercise simulation process.
In Figure 14a, evacuation begins. The top left corner shows that the total number of agents in the scene and the number

F I G U R E 12 For the three indicators (entropy, loss, cumulative reward), the GAIL training results are shown

F I G U R E 13 Comparison between the A* method and our presented GAIL approach regarding the average computational indicator
while the emergency evacuation task is conducted
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F I G U R E 14 Three-hundred-agent evacuation simulation process, shown from (a) to (i)

of successful evacuations are 300 and 0, respectively. In Figure 14b, most of the agents are “aware” of the fire, and the
agents who are far from the exit try to follow the leader agent in front of the exit position. The agents find that there is a
time delay from the fire to the reaction to evacuate; in fact, the scene is relatively large, and the existing agents are located
far from the exit. In Figure 14c,d, some agents who find their leader agents in the escape process ultimately form the
L-F model agent. Here, we set up only two exits. Due to the different directions of the exits, agents mainly evacuate from
these two exits. Subsequently, different evacuation queues naturally form. In Figure 14e, the agents in the same group
are close to each other and have the same goal. They show a tendency to act together to avoid obstacles. The leader agent
is at the forefront of the team and leads many follower agents to evacuate. In Figure 14g,h, the agents who do not finish
evacuation increasingly move toward the two exits. Finally, the number of successful escapes in the scene is 230 and 288.
In Figure 14i, all existing agents in the scene have successfully evacuated, and the fire drill is over.

5.3 Limitation

Although we can obtain good results based on the proposed framework, there still exist dozens of works and bottlenecks
that need to be addressed. Specifically, they are as follows. First, the expert data are lacking diversity, which leads to a lack
of enough fidelity of the simulation. To solve this problem, in the future, more expert data should be built to enhance the
diversity. Second, the grouping process of the agents is static; there exist some special occasions that are not considered,
such as follower agent defection so as to reselect the group. Third, more emergency scenarios should be tested in our
proposed framework, such as the city flood scenario, earthquake scenario, violence escape scene, and so on.

Additionally, there is much extended work to perform. One such area of research, for example, is based on a deep
learning method to automatically build disaster scenarios instead of manual establishment. In this way, the generality of
our proposed method has further enhanced and applied more scenes to create a virtual visualization decision platform.

6 CONCLUSIONS

In this article, a multiagent evacuation framework based on blended grouping and blended behavior patterns is pro-
posed. Importantly, the GAIL method is trained to obtain a related model that is utilized for path planning inference.
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To some extent, this method greatly reduces the online computing time and improves the evacuation efficiency. More-
over, by building a 3D simulation environment to simulate the virtual fire scenario, the simulation results and extensive
experiments are given to validate the feasibility of our proposed framework.

However, this article considers only the evacuation time and does not consider the casualties of the agents.
Moreover, the obstacles in the scene are static, and our framework is very effective. In follow-up work, we plan
to attempt more complex scenarios, including dynamic obstacles, and to fully consider how to avoid agent casual-
ties. In addition, to further improve the reality of virtual evacuation, in the future, we plan to create a large-scale
real emergency video scene dataset and use more learning methods to study the behaviors of agents in emergency
scenarios.
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