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a b s t r a c t 

With the rapid development of 3D technology, the demand to use and retrieve 3D models has become 

increasingly urgent. In this paper, we present a framework that consists of a sketch-based local binary 

pattern (SBLBP) feature extraction method, a learning algorithm for the best view of a shape based on 

multilayer perceptrons (MLPs) and a learning method for shape retrieval based on two Siamese MLP 

networks. The model is first projected into many multiview images. A transfer learning scheme based on 

graphic traversal to identify Harris key points is proposed to build relations between view images and 

sketches. In addition, an MLP classifier is used for classification to obtain the best views of each model. 

Moreover, we propose a new learning method for shape retrieval that simultaneously uses two Siamese 

MLP networks to learn SBLBP features. Furthermore, we build a joint Bayesian method to fuse the outputs 

of the views and sketches. Based on training with many samples, the MLP parameters are effectively fit 

to perform shape retrieval. Finally, an experiment is conducted to verify the feasibility of the approach, 

and the results show that the proposed framework is superior to other approaches. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

3D model retrieval has recently become a popular research

opic in computer graphics, information retrieval and pattern

ecognition. Determining how to identify, retrieve, reuse and re-

odel 3D data has become a common concern for designers, en-

ineers and researchers. However, these processes are subjective

nd biased, and the defects of text-based retrieval have become

ncreasingly apparent. Specifically, two people sometimes describe

he same object differently. These differences can be ascribed to

heir cultural backgrounds, their world views, their living environ-

ents and even their emotional states. Traditional text-based re-

rieval, which requires manual annotation, has become a very te-

ious and difficult task with the explosive growth of storage capac-

ties. Therefore, increasing focus has been placed on alternatives to

etrieval based on text keywords, which rely on only text annota-

ion to describe the content of the model. 

Hence, sketch-based retrieval has also become a major research

eld. One salient characteristic of a sketch is the stroke orientation.

he orientation characteristic has been broadly exploited, with su-

erior results in tasks such as object recognition and object cate-

orization. Furthermore, because a sketch lacks features, more ro-
∗ Corresponding author. 
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ust descriptors must be used to exploit the relationship between

ketches and shapes. 

However, many difficult problems, such as selecting the best

iew of a shape, remain. Above all, 3D models must be projected to

D images to partially solve the dimensional asymmetry issue be-

ween sketches and models. Nevertheless, the classification of good

iews and bad views is challenging. 

The main contributions of this paper can be summarized as fol-

ows: 

1 A transfer learning algorithm is used to classify view im-

ages of shapes. Multilayer perceptrons (MLP) are used for

classification. Through training with a sketch data set, the

best view images can be obtained according to learning

rules. This process improves the accuracy of the retrieval

results. 

2 A sketch-based local binary pattern [25] (SBLBP) descrip-

tor, which is extracted from a sketch, is proposed. The LBP

descriptor can successfully perform face image classifica-

tion. We improve the descriptor to make it more suitable

for sketches and call the new descriptor SBLBP. In addition,

principal component analysis (PCA) based on a whitening

method is utilized to reduce the dimensionality and decor-

relate the input features. 

The remainder of this paper is organized as follows. In

ection 2 , we present the related work. In Section 3 , we present

https://doi.org/10.1016/j.patrec.2018.09.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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the proposed framework, and Section 4 explains the details of the

framework. The experimental results and a comparative evaluation

are discussed in Section 5 , and Section 6 concludes the work. 

2. Related works 

Increasing effort s have recently been made to conduct research

in the field of content-based image retrieval. Kato et al. [1] pro-

posed a method called query by visual example, and Niblack et al.

[2] developed a query by image and video content system. Ac-

cording to Hu and Collomosse [3] , a key challenge in sketch-based

image recognition (SBIR) is overcoming the ambiguity inherent in

sketches. In fact, a sketch includes fewer features than an image

or a photo; for example, a sketch may only include a contour map

and some pixels. However, large differences exist in professional

and amateur hand-drawn sketches. The earliest work on 3D shape

retrieval with sketches was performed by a research group at Pur-

due [35] . The researchers used many descriptors, including 2D-3D

and 3D-3D descriptors, such as a 2.5D spherical harmonic descrip-

tor. 

Moreover, novel, relatively complete sketches based on a 3D

model retrieval system mainly were included in the following sys-

tem [4-6,36-39] . There were two key steps in this sketch-based 3D

model retrieval system: the 2D transformation and the extraction

of the sketch features of the 3D model. The quality of these two

steps directly determined the accuracy of the search results. 

Funkhouser et al. [7] proposed a 3D model retrieval engine

that supported the switch between 3D and 2D based on the 3D

spherical harmonic method. Furthermore, Eitz et al. [8] performed

2D/3D switching based on a retrieval algorithm using bag-of-words

(BOW) and histograms of oriented gradient (HOG) methods. How-

ever, these methods do not include preprocessing before retrieval.

Hence, the result may be affected because the ambiguous strokes

of a sketch or amateur drawing can cause sketch errors, which may

result in user errors. Moreover, Li et al. [11] proposed a preprocess-

ing operation before retrieval to assess the user hand-drawn sketch

and display the possible sketch based on the user demand. 

Several sketch-based model retrieval benchmarks have been

developed. Snograss and Vanderwart [12] proposed standard line

drawings (1980); Pu and Ramani [37] proposed a 2.5D spherical

harmonic transformation and a 2D shape histogram (2006). Cole

et al. [13] developed the line drawing benchmark (2008). Saave-

dra and Bustos et al. [14] created a sketch dataset (2010). Yoon

et al. [15] developed a sketch-based 3D model retrieval benchmark

(2010). Eitz et al. [8] created a sketch-based shape retrieval bench-

mark and later [10] proposed a sketch recognition benchmark

(2011), a small-scale benchmark [11] the SHREC’ 12 sketch track

benchmark, and the large-scale SHREC’ 13 sketch track benchmark

[16] . These benchmarks have played important roles in research on

and applications of sketch retrieval. In addition, the researchers at

Purdue successfully completed the tasks of commercial search en-

gines based on sketch retrieval, which is based on patented tech-

nology. 

Dalal and Triggs [22] proposed the HOG descriptor to capture

the edges of gradient structures, which are characteristic of the lo-

cal shape. In addition, translations or rotations have a minimal ef-

fect if they are smaller than the local spatial dimension or orienta-

tion bin size. However, because HOG is based on a pixelwise strat-

egy, the representation of a sketch image always includes many ze-

roes in the final histogram due to the sparse nature of the sketch.

Saavedra [21] proposed the improved histograms of edge local ori-

entations (HELO) descriptor. HELO is a cellwise strategy; there-

fore, it is generally appropriate for representing sketch-like images.

Saavedra proposed the soft computer of HELO (S-HELO) descrip-

tor to compute cell orientations in a soft manner using bilinear

and trilinear interpolation and to account for spatial information.
-HELO computes an orientation histogram using weighted votes

rom the estimated cell orientations. Fu et al. [17] proposed an im-

roved HOG descriptor, namely, the binary HOG descriptor (BHOG).

HOG is faster than the HOG descriptor when computing feature

ectors, and it requires less memory. 

To enhance the robustness to noise in sketch images, Chat-

ri and Kameyama [19] presented an adaptable framework based

n scale space filtering. First, a Gaussian filter smooths and fil-

ers the sketch image; then, the skeleton of the sketch image is

xtracted. Weiss et al. [18] proposed a spectral hashing algorithm

hat searches for compact binary codes of feature data, such that

he Hamming distance between code words is correlated with the

emantic similarity. Wang et al. [20] published a review detailing

he available hashing methods. 

Cross-domain convolutional neural network approaches, such as

earning two Siamese cross-domain convolutional neural networks

CNNs) [26] and learning pyramid cross-domain neural networks

PCDNN) [27] , have also been successfully applied for sketch-based

D retrieval. These methods achieve excellent accuracy; however,

hey do not focus on obtaining the best view image. Specifically,

hey only impose the minimal assumptions for choosing views of

he entire data set and ensure that the 3D models in the data

et are upright. In addition, Su et al. [41] proposed a multiview

NN method for model recognition. When applied to shape re-

rieval, this method produces good results. However, like the above

ethod, the input shapes are assumed to be upright, although

ome shapes may not be upright. 

Bai et al. [40] proposed a GPU acceleration and inverted file

GIFT) method for shape retrieval that yields very good results.

owever, the method ignores the negative effects of bad shape

iews on the final result and wastes considerable time process-

ng these bad shape views. Wu et al. [44] proposed a convo-

utional deep belief network to represent a geometric 3D shape

s a probability distribution of binary variables on a 3D voxel

rid. This method achieves good results in 3D shape recogni-

ion. Xie et al. [45] proposed a high-level shape feature learning

cheme to extract features that are insensitive to deformation via

 novel discriminative deep autoencoder. These features are appro-

riate for shape-based model retrieval and not sketch-based model

etrieval. 

Additional focus has been placed on feature fusion methods,

uch as graph fusion [4 8] , co-indexing [4 9] , and global weight tun-

ng. Zhang et al. [46] proposed a graph-based approach to fuse and

e-rank retrieval results obtained by different methods. Zheng et al.

47] proposed a simple yet effective late fusion method at the score

evel. Chen et al. [42] proposed a joint Bayesian (JB) fusion model

o test and verify face features and to reduce the separability be-

ween classes. This approach is adopted in this paper to fuse fea-

ures. 

. Proposed framework 

An overview of the proposed framework is presented in Fig. 1 . 

The framework consists of two main parts: the pair-processing

ipeline and the shape-processing approach. Specifically, a learning

lgorithm is proposed in the shape-processing pipeline. This algo-

ithm is the key tool used to obtain the best view of a shape. In ad-

ition, the LBP [26] descriptor has been successfully applied in im-

ge classification tasks. Therefore, we propose an improved LBP de-

criptor called SBLBP. In the pair-processing pipeline, the JB fusion

odel framework, which has been widely used in the face verifi-

ation domain, is used to determine the relationships between the

utput feature pairs of two networks. This approach can optimize

he overall network and improve the retrieval efficiency. Next, we

resent the details of the proposed framework. 
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Fig. 1. Overview of the proposed framework. 
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. Framework description 

.1. SBLBP descriptor 

Many different descriptors are used in the digital image field.

hese descriptors have been used to complete many different tasks

nd have achieved satisfactory results. We utilize the LBP feature,

hich is a type of local descriptor. 

This descriptor has yielded good results in face image classi-

cation, such as those presented by Ojala et al. [25] and Liang

t al. [28] . In addition, Liang et al. [29] proposed a content-aware

ashing method to extract sketch features. We present an SBLBP

ethod that combines these methods. 

An overview of the process of extracting the SBLBP descriptor

rom a sketch is shown in Fig. 2 . 

Clearly, unlike images, sketches do not contain color informa-

ion. Therefore, the traditional LBP method is not a good descrip-

or of a sketch. Moreover, pixel-based feature methods rarely yield

ood results for sketches. The HOG descriptor is considered one of

he best descriptors of a sketch. Therefore, our method is based on

he HOG orientation rather than pixel information, and we imple-

ent the SBLBP method. Next, we present the details of extracting

he SBLBP features from a sketch S i . 

tep 1. For the sketch ∀ S i , we uniformly collect the m × m sam-

le point set � = { ϕ 0 , . . . , ϕ i , . . . , ϕ m ∗m −1 } . Next, we select a sam-

le point ϕ i , i ∈ [ 0 , m 

2 − 1 ] and take this point ϕi as the cen-

er to build a 5 × 5 pixel window w 

k 
i 

( k = 0 ) . Then, we ex-

ract the histogram h i = { b u } 9 of the HOG descriptor of win-

u =0 
ow w 

k 
i 
. Subsequently, we continuously expand the size of window

w 

k 
i 

( k ← k + 1 ) until the area of the window w 

k 
i 

is larger than 1/4

he size of the entire sketch S i . We simultaneously select the his-

ogram h k 
i 

in the corresponding window. Finally, we constantly add

istogram h k 
i 

to histogram h i . However, because there is consider-

ble white space in a sketch, we set some restrictions to preserve

he accuracy of the histogram and reduce the effect of white space.

Let the term H represent the HOG histogram of the global

ketch S i . Moreover, we define two functions, F mean and F v ar , to

enote the mean function and the variance function of the his-

ogram, respectively. 

 mean 

(
h i 

k 
)

≥ �mean × F mean ( H ) (1) 

 v ar 

(
h i 

k 
)

≤ �v ar × F v ar ( H ) (2) 

here the terms �mean and �var are experimentally derived values

et to 0.8 and 1, respectively. Specifically, the terms �mean and �var 

re control parameters that control the number of windows and

emove the invalid windows, such as blank windows. In a sketch,

here are many blank windows or low-information windows. The

ariance of features of low-information windows is generally larger

han that associated with the features of the global sketch. 

Finally, when the histogram h k satisfies Eqs. (1 ) and (2) , it is

alid; otherwise, the sample point is invalid. 

tep 2. The key point-based method is often used to enhance the

obustness of the features. This case is non-excluding. Specifically,
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Fig. 2. Overview of LBP feature extraction from a sketch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The process of acquiring multiview images. 
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the Harris corner descriptor is considered one of best key point

methods. Hence, we obtain the Harris corner ζ from the entire

sketch S i . In addition, the Harris corner is used to improve the ro-

bustness of the descriptor and accuracy of sketch representation.

The Harris factor is computed using Eq. (3 ) . 

�k 
i = 1 + 

Count 

(
ζi 

k 
)

2 

√ 

area 
(
w 

k 
i 

) (3)

where the term �i 
k denotes the Harris factor of the k th

expanding window w 

k 
i 

of the i th sample point ϕi . Moreover, the

term Count( ζ i 
k ) represents the number of Harris corners in the

window w 

k 
i 
, and the term area ( w 

k 
i 
) denotes the area of the win-

dow w 

k 
i 
. The term �k 

i 
is a scalar. In fact, the size of the term b u 

i 
is

not important, and only the orientation is important. Therefore, we

reset each value b k u of the histogram h k 
i 
. Notably, we set the largest

4/9 of the values to 1 and the rest to −1. 

Step 3. We fuse the Harris factor �k 
i 

and histogram in this step.

For each histogram h k 
i 

= { b k u } 9 u =0 
from the window w 

k 
i 
, the Harris

factor �k 
i 

is multiplied by each value in the histogram h k 
i 
. Based

on this process, we can obtain a new histogram h 

k 
i ← h 

k 
i 

× �k 
i 
. The

term h k 
i 

is a vector, whereas the term �k 
i 

is a scalar; therefore, the

size of the new histogram h k 
i 

does not change. Next, the histograms

are added, as shown in Eq. (4 ). 

h i = 

∑ 

k =0 

h 

k 
i (4)

where the term h k 
i 

= { b k u } 9 u =0 
represents the feature vector of

the window w 

k 
i 
, and every h k 

i 
can be viewed as a set; therefore,

every element at a corresponding position in the set is added to-

gether. 

Step 4. We binarize each value b u of the histogram h i . Likewise, we

set the largest 4/9 of the values to 1 and the rest to 0. In this ap-

proach, the histogram h i can be denoted as a 9-bit binary value. 

Step 5. Because the histogram h i can be represented as a 9-bit bi-

nary value, each value can be considered one of the 9 cases. How-

ever, in some cases, a sample point is invalid because it does not
atisfy Eqs. (1 ) and (2) . In such cases, we set the 9-bit binary value

o 0. 

tep 6. The 9 values of each sample point are obtained via the

bove steps. Finally, a PCA whitening method is utilized to decor-

elate the features and to achieve unit variance in each dimension.

A good shape descriptor should be robust to represent the

ketches and the view images; that is, a good descriptor mini-

izes intra-category differences and maximizes inter-category dif-

erences. Hence, a good classifier should be used to perform this

ask. 

.2. Transfer learning algorithm for the best view 

Support vector machine (SVM) classifiers is are used to classify

mages. Recently, SVM classifiers have successfully classified shape

iews and obtained the best view of shapes. Eitz et al. [10] pro-

osed a method in which a model is projected into many differ-

nt viewpoint images. Specifically, we uniformly place hundreds of

ameras on the bounding sphere of the model so that the model

an be projected into multiple view images (see Fig. 3 ). Many of

hese images are undesirable, i.e., they are bad view images. There-

ore, a good classifier must be trained to effectively classify these

iew images. 

In this method, the negative effects of bad viewpoint images on

he retrieval results can be minimized. Moreover, the learning al-
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Fig. 4. Overview of the MLP learning algorithm for the best view. 

Fig. 5. The process of building the graph structure. 
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orithm should be used to obtain rules related to good views and

ad views. The sketch data set provides good examples for learn-

ng. This method was adopted by Zhao et al. [24] to acquire the

est view images of a model. Sometimes the obtained best view

mage is not unique. The overall process is shown in Fig. 4 . In this

aper, we select a deep neutral network as the classifier rather

han an SVM because experiments showed that the deep neutral

etwork produced better results than those produced by the SVM. 

The result of the learning algorithm is often dependent on the

cale of the training samples; therefore, we must determine the

elationships between sketches and view images. Specifically, posi-

ive and negative samples are acquired, and these samples are used

o train the network. 

tep 1. Relation metric. First, we must determine the relationships

etween sketches and view images. The structures of the view im-

ges and sketches are very similar; therefore, we attempt to ob-

ain their contextual relationships. For a sketch s i and view im-

ges V i = { v k 
i 
} n 

k =0 
, we obtain the Harris corner from the sketch s i 

nd the view image v k 
i 
. 

For a set of Harris corners �i = { ω 

t 
i 
} T t=0 , we connect every Har-

is corner ω 

t 
i 

with others if they are spatial neighbors. Thus, we

an build a graph structure G ( V , E ), where the term V is the Harris

orner set V ⊆� i . The process is shown in Fig. 5 . 

For a sketch s u 
i 

and a view image v k 
i 
, we easily build the graph

tructures G 

s 
i 
= { V, E S } and G 

v 
i 

= { V, E v } , where the terms E S =
 g i } n i =0 

and E v = { h j } m 

j=0 
are patch sets from the sketch and view,

espectively. Moreover, for the terms g i and h j , we can define the

ontext distance d con ( g i , h j ) to measure the relationship between

he sketch patch and view patch. 
The context distance is given in Eq. (5 ). 

 con 

(
g i , h j 

)
= exp 

( 

−
d app 

(
g i , h j 

)2 

2 σ 2 

) 

cos 
(
θi , θ j 

)
(5) 

here the parameter σ = 0 . 2 and the term d app ( g i , h j ) denotes the

uclidean distance between the normalized mean positions. More-

ver, the mean orientation of the term g i is represented as θ i in

ketch s u 
i 
. Likewise, the mean orientation of the term h j is denoted

s θ j in view v k 
i 
. 

For the terms g i and h j , we assume that W 

n 
i 

represents a walk of

ength n starting at edge g i . Likewise, W 

n 
j 

denotes a walk of length

 starting at edge h j . Therefore, the walk distance can be repre-

ented as follows. 

 

n 
walk 

(
g i , h j 

)
= 

1 

n + 1 

n +1 ∑ 

k =1 

d con 

(
w 

k 
i , w 

k 
j 

)
(6) 

here the term w 

k 
i 

is the k th edge on the walk of path W 

n 
i 

starting

rom an edge g i . Therefore, the final similarity relation between a

ketch s u 
i 

and a view v k 
i 

can be defined as follows. 

key 

(
s u i , v k j 

)
= 

1 

| L i | 
∑ 

{ q | q ∈ E v } 
max 

{ p| p∈ E S } 
d n walk ( p, q ) (7) 

Here, | L i | is the number of edges E S . 

Notably, the number of vertices in both graphs is often dif-

erent, and the sketch can be smooth and contain fewer vertices

han the view graph. Therefore, parameter n is very important; if

ts value is too large, the vertex count may be less than n , resulting

n walk failure. In addition, a long computational time is required

n this case. Hence, in this paper, n is set to 4 to obtain an accurate

esult and reduce the computational requirements. In general, the

umber of vertices in a graph can be greater than 4. 

tep 2. Training samples. Many related samples must be acquired

o train the network and can obtain the best view image of a shape

hrough the learning framework. Hence, we first collect positive

amples, which often belong to the same category of sketches. In

act, Eitz’s sketch data set [4] includes 80 sketches in each category.

herefore, we can easily build relationships among the 80 sketches
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Fig. 6. Four different penalty function curves. 
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in each category and the multiview images. Moreover, we can de-

fine a discrimination function D to classify positive samples and

negative samples. 

For a sketch s u 
i 

belonging to the i th category of sketch set S i and

a view image v k 
j 
, we can define a probability function p (0 < p < 1)

as follows. 

p 
(
v k j , s 

u 
i 

)
= 

�key 

(
v k 

j 
, s u 

i 

)
− min 

{ x | x ∈ s i } 
�key 

(
v k 

j 
, x 

)
min { x | x ∈ s i } 

�key 

(
v k 

j 
, x 

) (8)

From Eq. (8 ) , we can obtain the relation between a view image

v k 
j 

and every sketch s u 
i 

in the i th category. Hence, for a view image

v k 
j 
, the probability function p between the view image and the i th

category of sketch set S i can be denoted as follows. 

p max 

(
v k j , S i 

)
= max 

{ Y | Y ∈ S i } 
p 
(
v k j , Y 

)
(9)

p mean 

(
v k j , S i 

)
= 

1 

| S i | 
∑ 

{ Y | Y ∈ S i } 
p 
(
v k j , Y 

)
(10)

As noted above, we must define a discrimination function D to

obtain the positive and negative samples related to multiview im-

ages. 

D 

(
v k j 

)
= 

⎧ ⎨ 

⎩ 

1 i f p max 

(
v k 

j 
, S i 

)
> ξ

0 i f p mean 

(
v k 

j 
, S i 

)
≤ κ

null otherwise 

(11)

where the term D( v k 
j 
) = 1 indicates that the view image v k 

j 
should

be treated as a positive sample, and 0 denotes a negative sample.

To obtain as many positive and negative samples as possible, we

set the values of the parameters ξ and κ to control the number of

samples. Because the sketch is ambiguous and uncertain but the

view image is clear and smooth, we typically try to maximize the

value of ξ and minimize the value of κ . Based on experiments,

we set the parameters to ξ = 0 . 95 and κ = 0 . 05 to maximize the

numbers of qualified positive and negative samples. 

Step 3. Learning method of the proposed network. We can obtain

many samples by following the above steps. As a result, the num-

ber of positive samples is much larger than the number of negative

samples because two sketches from the same category can gen-

erally be treated as a positive sample. Nevertheless, the number

of negative samples is relatively small. We construct relation met-

rics for sketches and sketches, sketches and views, and views and

views to obtain more negative samples. Deep learning methods re-

quire large-scale samples for parameter fitting. The number of pa-

rameters in a neutral network often exceeds one million. Therefore,

we collect one million positive and negative samples. Furthermore,

we can efficiently manage these large-scale samples. 

Step 4. Training and testing . The SoftMax activation function is

used to output the final results of the network analysis. Specifi-

cally, we define a "Score" function to represent the final output re-

sult of the MLP network. Therefore, for each view image v k 
j 
, the

scores function can be represented as follows. 

Scores 
(
v k j 

)
= max 

{ x | x ∈ P } 
e x ∑ P 
x e 

x 
(12)

where the term x represents one of the output perceptrons, and

the term P is the number of nodes in the output layer. 

Because we have collected many positive and negative samples,

we perform training to fit the related parameters of the entire

network. The SoftMax function is adopted as a metric-based tool.
learly, the output layer only includes two different units: a label

alue of 1 and a label value of 0. Thus, this problem is a classical

inary classification problem. Moreover, in the test stage, utilizing

he label predication, we can obtain good view images and remove

he bad view images. 

tep 5. View ranking. The view ranking approach was proposed by

hao et al. [24] . The purpose of the approach is to avoid a focus on

iew images from a specific viewpoint and to maintain the diver-

ity of view images. Notably, the best view is not always unique.

ince each view image v k 
i 

is densely sampled from the bounding

phere of the model, nearby viewpoints often have similar scores

ecause these viewpoints often have very similar contours. There-

ore, if we select the top N best v k 
i 

( ̃  V ) values by directly ranking

he highest scores, the results may be collected from only one side

f the 3D shape, which is often invalid. Hence, we attempt to en-

ourage diversity in the view images while suppressing view im-

ges obtained from nearby viewpoints. 

Endres and Hoiem [30] first proposed a ranking strategy. Sub-

equently, Zhao et al. [24] improved the method and proposed a

ew score suppression method. We adopt this viewpoint ranking

ethod. 

From Eq. (12 ), we can obtain the score of each view image.

hen, the ranking strategy is used to adjust this score. We define a

ew function 

˜ S , which is denoted as follows. 

˜ 
 

(
v k j 

)
= Scores 

(
v k j 

)
+ F 

(
�

(
v k j 

))
(13)

here the function F (.) represses score growth as �( v k 
j 
) increases.

herefore, F (.) is a monotonically decreasing function. Moreover,

( v k 
j 
) represents the similarity relation between the viewpoint v k 

j 

nd other viewpoints. Here, the normal distribution is used to re-

ress score growth. 

 ( x ) = e 
−x 2 

2 ∗σ2 v (14)

The term σ is used to control the effects. Fig. 6 shows four

ifferent penalty function curves. We find the function F (0.5) ≈ 0

hen σ is set to 0.15. 

Next, we measure the similarity relation in each view image by

he function � (.), which can be denoted as follows. 

( x ) = max { a | a ∈ ̃ V } IoU ( x, a ) (15)

here the term 

˜ V is a set of viewpoints that includes all those

ith ranks higher than that of viewpoint x . 
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Fig. 7. IoUs of four viewpoints used to compute similarity. The IoU of viewpoints 

(a) and (b) is 0.56, that of (a) and (c) is 0.97 and that of (a) and (d) is 0.63. 

Fig. 8. Architecture of the proposed MLP. 
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Algorithm 1 

shape retrieval based on Siamese MLPs. 

Input: a sketch s 0 
Output: the retrieval result set R 

Initialized: R ← ∅ , the size of the shape data set is n, the number of best view 

images for each model is k, the similarity value set 

T = { 0 ≤ i < n , 0 ≤ j 〈 k | T j 
i 

= 0 } 
Step 1. For i = 0 , . . . , n − 1 then 

Step 2. For j = 0 , . . . , k − 1 then 

Step 3. T j 
i 

= z( v j 
i 
, s 0 ) 

Step 4. If y ( v j 
i 
, s 0 ) = 1 and M i / ∈ R then 

Step 5. The shape M i , R ← M i 

Step 6. End if 

Step 7. End for 

Step 8. T i = max 
0 ≤j < k 

( T j 
i 
) 

Step 9. End for 

Step 10. According to T, rank the retrieval result set R 
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The intersection over union ( IoU ) is employed to measure the

imilarity of two viewpoints. Moreover, the function IoU is repre-

ented as the intersection of two viewpoint projection areas di-

ided by their union. Fig. 7 shows an example of the IoU . 

.3. The MLP architecture 

In this section, we present the architecture of the proposed MLP

s a learning network. MLP networks exhibit powerful and excel-

ent classification ability. The structure of the MLP used in this pa-

er is shown in Fig. 8 . 

In the training stage, the MLP network requires the fit-related

arameters W = { w i } 8 i =0 
and b = { b i } 8 i =0 

. The network consists of

ine layers, specifically, nine hidden layers. The activation function

f each hidden layer is a sigmoid function or tanh function. In ad-

ition, dropout functions are included in the 4th and 7th hidden

ayers to improve the computational efficiency. 

It is important that the network parameters are fitted. Specif-

cally, the related optimizer can optimize the cost function of the

etwork to finish the training task of the network. For any learning

ethod, good samples, a robust optimizer and a correct cost func-

ion are very important. In this paper, the cost function is based on

he famous cross-entropy method. In addition, the RMS optimizer

s used to minimize the cost function. Via a back-propagation

cheme, the parameters of each layer can be increasingly adjusted

or system optimization. In general, the training process is based

n a back-propagation scheme, whereas the network prediction

rocess can be viewed as a feed-forward operation. 

Moreover, we adopt a mini-batch learning method as a com-

romise between batch gradient descent and stochastic gradient

escent (SGD). This method allows us to replace the for loop over

he training samples in SGD with a vector operation and can im-

rove the computational efficiency of the learning algorithm. In the

nitial training step, we set the matrix × W 1 → {0}. 

Algorithm 1 

w 1 = η
∑ 

i 

(
y ( i ) − φ

(
z ( i ) 

))
x ( i ) (16) 
here the term y ( i ) is the predicted value of the i th layer and the

erm φ( z ( i ) ) is the output value of the i th layer. The term φ is an

ctivation function. In addition, the term x ( i ) is the input value of

he i th layer. The variable η is the learning rate. We adopt an adap-

ive learning rate method, in which the fixed learning rate η is re-

laced by an adaptive learning rate that decreases over time. Note

hat SGD does not reach the global minimum but a value close to

t. By using an adaptive learning rate, we can reach a better global

inimum. Here, we define the learning rate η as follows. 

= 

k 1 
k 2 + ϕ 

(17) 

here the terms k 1 and k 2 are experimentally derived constants set

o 1 and 10 0 0, respectively, so that η ∈ (0, 0.001). Moreover, the

erm ϕ represents the number of iterations. Therefore, as the num-

er of learning iterations increases, the learning rate decreases. 

In this paper, an MLP network is used to classify the view im-

ges of models and the proposed SBLBP features. For the best view,

e scale the sample size to 50 × 50. Thus, the input shape of the

LP is 2500. In addition, for the SBLBP features, for equivalent siz-

ng, i.e., 900, in this case, the input shape of the MLP is 900. 

.4. The framework of the fusion model 

In this section, the learning framework is produced by fusing

ll types of features. The BOW framework is based on the distance

elation of each extracted feature. However, emphasis is placed on

he extracted features. Furthermore, the process of computing the

eature distance relation is time consuming, and the result is not

lways good. With the development of learning algorithms, deep

earning methods can yield the best results, as confirmed in this

aper. A JB method is adopted to improve the retrieval perfor-

ance. 

JB methods have been successfully used in sketch recog-

ition research, for example, by Yu et al. [43] . The JB

odel can be considered a feature similarity matrix J =
 �( x i , x j ) ] 0 ≤i ≤M, 0 ≤ j≤N , where M > N. The term N is the number of

raining views, and the parameter M is the sum of the number of

raining sketches and views. In addition, the equation for �( x i , x j )

s as follows. 

( x 1 , x 2 ) = x T 1 A x 1 + x T 2 A x 2 − 2 x T 1 G x 2 (18)

here matrix x 1 represents sketch features and matrix x 2 denotes

he sketch or view features. The relationship between a view and

iew features does not need to be calculated because the best view

as been obtained based on the method in the above section. 

The parameters A and G are negative semidefinite matrixes with

alues that can be determined by learning based on the data set.
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Fig. 9. Overview of the JB optimization for training shape retrieval. 
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Specifically, A and G of the matrix can be represented as follows. 

A = 

(
C μ + C ε 

)−1 − C μ + C ε (
2 × C μ + C ε 

)2 
(19)

G = − C μ(
2 × C μ + C ε 

)2 
(20)

where the terms C μ and C ɛ represent the intra-class and inter-class

covariance of features x 1 and x 2 , respectively, i.e., if the features

x 1 and x 2 belong to the same category, the term C μ is the co-

variance of the features, and C ε = 0 ; otherwise, the term C μ =
0 , and C ε is covariance of the features. 

Finally, we train the JB model to effectively account for intra-

ensemble correlation based on a developed metric. Note that

the process fuses each feature dimension, implicitly giving more

weight to more important features and finding the optimal combi-

nation of different features of different models. 

An overview of the JB framework is given in Fig. 9 . 

4.5. Shape retrieval based on the MLP network 

4.5.1. Training stage of shape retrieval 

As noted in Section 4.4 , after we obtain the best views of the

model, we can build the pairs data set of sketches and best views.

The pairs data set includes the training samples of the MLP net-

work. Clearly, we can easily tag pairs of samples with binary labels,

i.e., if they are from the same category, we tag the pair with 1;

otherwise, the pair is tagged with 0. These pairs can be considered

positive and negative samples. An overview of the training stage

is shown in Fig. 9 . The cost function of network is based on the

cross-entropy method. Additionally, the RMS optimizer is adopted

to minimize the cost function. Thus, a back-propagation algorithm

can be used for training to obtain the related the network parame-

ters. Finally, we can obtain a model of the MLP network ( ∗.h5) that

includes the parameters of Siamese MLP networks and the SBLBP

features of all best views and images in the data set. Next, we uti-

lize this model to obtain retrieval results. 

4.5.2. The testing stage of shape retrieval 

As shown in Fig. 10 , the shape retrieval task is completed by

predicting the labels of an input sketch. For a new input test sam-

ple, the retrieval steps are as follows. 
tep 1. Prediction. The SBLBP features of a new input test sample

a sketch) can be obtained. A retrieval process must include N pre-

ictions ( N represents the number of best view images in the data

et). For any a model M i in the data set, the best view images can

e represented as the set V i = { v 0 
i 
, . . . , v k 

i 
} ( k ≤ 5 ) . The relationship

etween the pair associated with the terms s 0 and v k 
i 

can be rep-

esented as follows. 

 

(
v k i , s 0 

)
= argmax 

(
y ( 

0 ) 
pred 

(
v k i , s 0 

)
, y ( 

1 ) 
pred 

(
v k i , s 0 

))
(21)

where the term y (1) 
pred 

represents the value of the function �

hen v k 
i 

and s 0 are associated with the same category; otherwise,

 

(0) 
pred 

= �(v k 
i 
, s 0 ), and the pair is associated with different cate-

ories. 

In addition, the similarity can be measured as follows. 

 

(
v k i , s 0 

)
= max 

(
y ( 

0 ) 
pred 

(
v k i , s 0 

)
, y ( 

0 ) 
pred 

(
v k i , s 0 

))
(22)

here, the term z can be viewed as a weight of every retrieval re-

ult. 

tep 2. Output results. For any model M i and its best view image

et V i , if a view image v k 
i 

exists, the prediction label of the pair

ssociated with v k 
i 

and s 0 is 1. Thus, the model M i can be viewed as

 retrieval result, i.e., for retrieval result set R , R ← M i . Finally,

he retrieval result can be generated as an output. 

tep 3. Ranking. For retrieval result R , the ranking operation must

e implemented. According to Eq. (21 ), the final result set R can

e obtained. 

The shape retrieval process based on Siamese MLPs can be seen

n the following algorithm. 

. The experiments 

.1. Environments 

The method presented in this paper is implemented using

ython 3.6 and is executed on an Apple PC with Mac OS Sierra

0.12, an Intel core I5 processor and 4 GB of memory. The deep

earning framework used in this paper was Google tensorflow,

hich is an open-source, distributed, deep learning library for
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Fig. 10. Overview of shape retrieval based on the MLP network. 
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Fig. 11. AUC comparison for retrieval using the proposed method and other state- 

of-the-art methods. 
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he Python language. View image acquisition was performed using

 ++ . 

We compare our results with those of many other descriptors

ethods using the data set proposed by National Taiwan Univer-

ity ( NTU dataset) [23] , which is composed of 10,119 3D models.

n addition, the sketch data set is from Eitz et al. [4] and contains

0,0 0 0 query sketches in 80 different categories. 

In addition, we compare the proposed method with state-of-

he-art retrieval methods. We perform the experiments based on

he Princeton Shape Benchmark (PSB) data set [31] , which com-

rises 907 training models and 907 testing models. 

.2. The best view of a shape experiment 

The proposed method of obtaining the best view of the model

s tested in this section. We demonstrate that our approach

chieves results that are competitive with those of other state-

f-the-art methods, including the web image-driven method [34] ,

erceptually best views classifier [4] , and SVM-based learning

ethod [24] . To facilitate the comparison, we implement the above

ethod, and the results of these methods are then applied to the

etrieval application. In this manner, we can objectively evaluate

he methods. Furthermore, we use the area under the precision-

ecall (PR) curve (AUC) to evaluate the retrieval performance.

pecifically, the area under the PR curve of a retrieval result is ap-

lied to evaluate the retrieval performance. A large AUC value in-

icates better performance. 

Fig. 11 shows that the proposed best view learning method

chieves the highest AUC, mainly because bad view images can

egatively affect the final retrieval result. In other words, the fewer

ad images there are, the better the retrieval performance is. By

emoving these images, we can obtain the best view of the shape. 
.3. The shape retrieval experiment 

To evaluate the performance of the retrieval system, we com-

are our method with the other methods in terms of the PR cri-

erion, which has been widely used in many retrieval applications,

ncluding text-based retrieval. 

We assume that there are n models in the data set. The pre-

ision P measures the accuracy of the relevant models among the

op K (1 ≤ K ≤ n ) ranking results, and the recall R is the percentage

f the relevant class that has been retrieved in the top K results.

hese two values are used to create the PR curve. 

We compare our approach with others based on the NTU data

et. The other descriptors are the HOG [22] , oriented FAST and

otated BRIEF (ORB) [32] , scale-invariant feature transform (SIFT)

33] descriptors. Our descriptor is SBLBP. 

The results are shown in Fig. 12 . The SBLBP method is clearly

uperior to the other methods and SIFT produces bad results. In
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Fig. 12. Performance in terms of the PR criterion based on the NTU data set. 

Fig. 13. Performance in terms of the PR criterion based on the PSB data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. PR curves of 3 different methods for upright models. 

Fig. 15. PR curves of 3 different methods for non-upright models. 
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fact, SIFT, which is an image descriptor that is dependent on color

and pixels, is not suitable for sketches. 

The above results compare the proposed SBLBP to other de-

scriptors. The figure shows that the result obtained with the pro-

posed method is better than those of the other methods because

the SBLBP descriptor mainly focuses on the orientation of sketch

strokes and considers the Harris key point descriptor. Thus, the

SBLBP is more intelligent and distinctive and yields the best re-

sults. In addition, the SBLBP descriptor has some advantages in

terms of time consumption because it uses binarized processing

to perform fast comparison operations. 

In addition, we compare the SBLBP descriptor with state-of-

the-art descriptors based on the PSB data set. Many sketch-based

shape retrieval descriptors exist. In this paper, we select the fol-

lowing four descriptors for our comparison experiment: the dif-

fusion tensor (DT) [9] , SIFT-Grid (SG), GALIF-Grid (GALIF) [4] , and

content-aware hashing (CAH) [29] . These descriptors often produce

good sketch-based shape retrieval results based on the PSB data

set. The results are shown in Fig. 13 . 

However, deep learning methods have recently achieved great

success. Our proposed framework, which is based on deep learn-

ing, is no exception. Furthermore, to illustrate the superiority of

this framework, we compare our method with other deep learning

methods, such as cross-domain CNN (CDCNN) [26] , which assumes

that shapes are upright, and multiview CNN (MVCNN) [41] , which
s based on a multiview method, regardless of whether the view

mages are god or bad. 

We select many different shapes from several famous data sets,

ncluding PSB, SHREC 2013, SHREC 2014, and ModelNet40 [50] ,

hich contains 12,311 CAD models from 40 categories, and the

TU data set, which includes upright and non-upright models. We

ame this data set the Composite Model . The main reason for em-

loying this data set in this comparison experiment is that we can

ffectively assess the performances of the 3 different sketch-based

etrieval systems for upright and non-upright models. Specifically,

e select 100 different category models from the above data sets.

n addition, to validate the robustness of the proposed method, the

ollected models are not all upright. Although the CDCNN method

ssumes that the shape is upright, in the proposed method, this

equirement is not necessary. 

The results in Fig. 14 show that the 3 different methods have

imilar PR curves; although, it is difficult to say which method per-

orms best. However, for non-upright models, the CDCNN meth-

ds assume that the model is upright. In fact, most models are

pright. However, some models, such as CAD models, are not up-

ight. Fig. 15 shows the experimental results for non-upright mod-

ls. Clearly, the MVCNN and the proposed model obtain good re-

rieval results, whereas the CDCNN results are relatively poor. No-

ably, the proposed method acquires the best view of the model by

earning rather than by assumption. Finally, we compare the av-

rage retrieval time response of our method with those of other

ethods based on the SHREC 2014 and SHREC 2016 data sets. The

esults are shown in Fig. 16 . 
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Fig. 16. Retrieval responses of 3 different methods for non-upright models. 

Fig. 17. Example of retrieval based on the PSB data set. Note that red represents an 

incorrect retrieval result, and green represents a correct retrieval result. 
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The models in SHREC 2016 are more numerous and complex

han those in SHREC 2014. Therefore, the time response on SHREC

016 is generally larger. Fig. 16 shows that the time response of

he MVCNN method is obviously larger than those of the other

ethods because of the time consumed performing calculations

or multiple views. 

.3. Discussion 

According to the results in the previous section, our method is

uperior to the other methods in various ways. Specifically, the sta-

istical results are better than those of other methods based on the

TU and PSB data sets. We must attempt to reduce the number of

ad view images, which negatively affect the retrieval results. Our

roposed best view of the shape method utilizes a deep learning

lassifier (MLP) to obtain the best view images. Overall, for large-

cale samples, the deep learning classifier is superior to other ap-

roaches, such as SVMs. 

Moreover, we propose a sketch-based LBP descriptor approach.

n general, good retrieval performance depends on a good descrip-

ion or representation of sketches and view images. 

Fig. 17 shows an example of the proposed method. Clearly,

ome errors exist for the retrieval process using the proposed

ramework because the method is class specific and not sample

pecific. In some categories, there are large intra-class differences,

uch as for the dog model. However, it is difficult to build a one-

o-one mapping relation between a sketch and a model. 

. Conclusions 

In this paper, we propose a framework for sketch-based shape

etrieval. This framework focuses on the following three tasks.

irst, we propose a new sketch-based LBP descriptor for sketches.

econd, we propose a new learning algorithm to obtain the best

iew of a shape. Third, we utilize two Siamese MLP networks to
onduct transfer learning for shape retrieval. In addition, the JB fu-

ion method is adopted as the strategy for transfer learning. The

xperimental results show that the proposed framework is feasi-

le and superior to other methods. However, further work, such

s network structure and the use of a more complex deep neural

etworks, is required to improve the performance of the proposed

ramework. 
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