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Abstract With the advent of the era of “big data”, increasing efforts have been focused on
how to process large models to improve transmission over the internet and display in a
browser, i.e., Web3D technology. Notwithstanding the many new advancements in Web3D
technology, because browsers have limited storage capacity and low computational ability, the
efficient display of a large model through the net remains a bottleneck problem. This paper
proposes a light-weighting visualization framework, called the S-LPM framework, which
includes a novel Dijkstra-based mesh segmentation operation and a new voxel-based repetition
detection/removal operation to efficiently display large 3D models in a Web browser. The two
key geometric operations substantially reduce the amount of data transmitted over the net,
which in turn significantly increases the transmission speed. The partially transmitted data are
then aligned through transformations to restore the entire original model and display it in the
Web browser. The experimental results show that our approach is generally accurate and
feasible, and its performance is superior to that of the benchmarking methods.
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1 Introduction

With the coming internet plus era, VR technology has rapidly been evolving, with increasing
emphases/demands on Web browsers. The efficient processing of 3D models is a key to Web
browsers. Nonetheless, the conflict between the limited load capacity and the growing data
demands is becoming increasingly critical. Effective transmission and rendering of 3D data
over Web browsers has never been more critical, especially in Web3D visualization. Level of
detail (LoD) technology was believed to be one of the best solutions for Web3D visualization;
however, it remains a synchronous processing method of loading and rendering. In addition,
LoD technology can process only a single model at a time, rather than a scene of many
different models. The new WebGL/HTML5/three.js technology makes it easier to visualize a
3D model over Web browsers. However, this technology still processes only a single mesh at a
time and lacks support for progressive meshing. Motivated by the above limitations, in this
paper, we propose an S-LPM framework to process 3D models for Web viewing. Our
framework supports multi-threads, which significantly accelerates Web viewing because
multi-thread asynchronous loading and increment rendering can alleviate the burden placed
on browsers. Additionally, the novel framework offers an efficient matrix formulation for mesh
segmentation through which the majority of repeated components in the 3D model can be
eliminated.

The proposed framework makes several contributions. First, we propose a new method of
mesh segmentation for the detection/removal of repeated components. This method consists of
mesh segmentation, progressive meshing, repetition detection and transformation of repeated
components. The approach covers both data transmission and rendering, spanning the entire
lifecycle of Web3D visualization. Second, our mesh segmentation can achieve asynchronous
multi-thread transmission. Third, via progressive meshing, we are able to realize incremental
loading and rendering. Finally, a Dijkstra-based algorithm is proposed for mesh segmentation
to significantly improve both the speed and the results of mesh segmentation.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
literature. Section 3 introduces our proposed framework. Section 4 provides details about
the specific methods and algorithms constituting the framework. Section 5 presents our
experiments to validate the effectiveness and soundness of our proposed framework.
Section 6 concludes the paper.

2 Related work

A number of solutions, such as stream mesh, mesh simplification, mesh reconstruction,
parametric surface and implicit surface models, have been proposed to improve the user
experience of large geometric models over a Web browser. Martin et al. [12] proposed a
scheme that incrementally encodes a mesh in the order it is given to the compressor using only
minimal memory resources. Compression begins after receiving the first few triangles. How-
ever, decompression demands substantial memory and computing resources, but Web
browsers have limited computing capacity and storage space. Simplification technology can
reduce the complexity of an originally very large mesh and, to some extent, can improve the
rendering and loading performance of 3D models over a Web browser. However, simplifica-
tion reduces the accuracy of the model, which is often an undesirable side effect in many
Web3D applications. The reconstruction approach eases the burden on memory but requires a
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large additional amount of computing time to reconstruct the mesh, and it often leads to poor
user experience. Parametric surface representation, while often achieving good results for
models with smooth shapes, is generally not suitable for models with sharp corners and planar
faces, such as building information models.

As a powerful means of geometric analysis, mesh segmentation has been applied in many
areas, such as component-based shape synthesis (Kalogerakis et al. [13]), which uses segmen-
tation and labelling to produce new models by transferring corresponding segments from one
model to another; 3D scene analysis; part-based recognition, 3D video compression; and 3D
object retrieval (cf. Theologou et al. [30], Savelonas et al. [25]). Golovinskiy et al. [2]
introduced a graph-clustering method to balance intra-mesh and inter-mesh segmentation.
They built the connection by matching points between rigidly aligned meshes. However, they
only handled a limited number of model types due to the requirement of global rigid
alignment. Xu et al. [33] classified meshes according to their styles and then established the
part correspondences in each style group. However, the group generation process was com-
putationally expensive. Kreavoy et al. [17] created a consistent segmentation by matching
parts generated from an initial segmentation. Huang et al. [10] considered the segmentation of
individual meshes via linear programming. However, the segmentations generated by these
methods cannot guarantee consistency across the whole set of meshes, even if they are
mutually consistent. Sidi et al. [29] analysed the descriptor space via spectral clustering to
segment a set of shapes with large variability. Meng et al. [22] clustered primitive patches to
generate an initial guess and improve the co-segmentation results via multi-label optimization.
Hu et al. [9] generated segmentations by grouping the primitive patches of the meshes directly
and simultaneously obtained their correspondences. Their method achieves certain success,
benefiting from the observation that patches belonging to the same part are likely to be in one
common subspace in the feature space. Liu et al. [21] introduced the low-rank representation
into sematic mesh segmentation and labelling; however, their method has several limitations,
such as model style.

In addition, a rich body of mesh segmentation methods in the computer graphics literature
aim at decomposing a mesh into functional parts. Shamir [26] and Agathos et al. [1] published
a survey of these methods, and Attene et al. [3] compared several representative mesh
segmentation algorithms. The methods in [1, 3, 26] aimed to create segments that are well-
formed according to some pre-defined low-level criteria; moreover, the segments are convex,
e.g., the boundaries lie along concavities. Well-known segmentation techniques include K-
means (Shlafman et al. [28]), graph cuts (Katz et al. [14]), hierarchical clustering (Garland
et al. [7], Inoue et al. [11]), random walks (Lai et al. [18]), core extraction (Katz et al. [15]),
tubular primitive extraction (Mortara et al. [23]), spectral clustering (LIU et al. [20]), and
critical point analysis (Lin et al. [19]). Theologou et al. [31] published a comprehensive survey
of 3D mesh segmentation, including the current trends in 3D mesh segmentation.

On the other hand, many 3D models are man-made and comprise a wide range of
components that tend to follow some obvious segmentation according to the connectivity.
Similar components with different rigid body geometry transformations usually exist in these
3D models. Shikhare et al. [27] and Cai et al. [4] proposed a repetition detection approach to
find similar components in 3D models; however, their matching methods are not accurate due
to the limitations of their strategies. Wen et al. [32] presented a similarity-aware 3D model
reduction method called lightweight progressive meshes, which attempts to search similar
components and reuse them through the construction of a lightweight scene graph. However,
their method depends on manual segmentation. Zhang et al. [34] proposed a novel cross-media
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distance metric learning framework based on sparse feature selection and multi-view
matching. They constructed a multi-modal semantic graph to find the embedded manifold
for cross-media correlation. However, the scale of their test dataset is too small for genuine
validation. Saleem et al. [24] proposed a scalable linked data-driven solution for the integra-
tion, query and visualization of bio-medical data; however, again, the scale of the data source
is too small.

3 Proposed framework

Figure 1 graphically illustrates the flow of our proposed framework, which consists two main
parts – the online pipeline and offline pipeline. In the offline pipeline, a suite of operations –
mesh segmentation, mesh split, component repetition detection, and transformation – are
performed on the original complete model. Pose alignment is adopted for the later task of
correctly reassembling the segmented components into the original 3D shape, and a fine-
grained scene graph (FG-SG) file is obtained at the end of the pipeline. In the online pipeline
stage, the FG-SG file is first parsed; then, multi-threads are generated to concurrently and
asynchronously load the mesh data. Furthermore, the outcome of each sub-thread is sent to the
main thread to perform component-wise rendering. In addition, progressive rendering is
performed for large components. Finally, the repeated components are represented by a matrix
transformation. These processing steps enable a large mesh model to be completely visualized
over a Web browser.

Pose alignment processing, which we adopt and implement in our system, was originally
proposed by Wen et al. [32]. The main objective of pose alignment is to represent the
components of a model in a canonical coordinate system so that the disassembled components
can be easily reassembled to form the original 3D model. Pose alignment processing includes
translation-invariant, rotation-invariant, and scaling-invariant transformations. Every compo-
nent can individually perform these transformations. During the process, the transform
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Figure 1 Overview of the proposed framework
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quaternion associated with each component of the model has to be recorded for later
restoration. When the process is optimized, in particular, by using PCA to add a symmetry-
invariant transformation after the rotation-invariant transformation, the alignments of similar
components become overlapped.

In the next section, we provide more details and describe the key technologies of our
proposed framework.

4 Details of the S-LPM framework

4.1 Dijkstra-based mesh segmentation

Mesh segmentation is a powerful tool in many geometric processing areas, such as mesh
compression, surface parameterization, and shape feature identification. A new procedure
based on the Dijkstra algorithm is proposed in this paper. The Dijkstra algorithm is used to
find the shortest path between nodes in a graph. First, we take any triangle in the mesh as a
node. Then, the mesh model is converted into a network. This network can be
separated into several regions based on triangle diffusion. Finally, the mesh is split
into many different regions to achieve mesh segmentation. The entire process of the
Dijkstra-based mesh segmentation consists of two major operations, i.e., determination
of source set, regional diffusion (see Figure 2).

4.1.1 Description of the algorithm

1. Determination of the set of diffusion sources T .

Figure 2 Overview of the proposed mesh segmentation algorithm
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We K calculate the position of barycentre F! of the whole model S and then acquire the

nearest triangle T 0 from barycentre F! as the first diffusion source position. In addition, the
centroids of all the triangles are calculated, i.e., K ¼ k1; k2;…; kmf g; where the term m is the
number of triangles in S. The distances between the centroids in K and the centroid of triangle
T 0 are computed. Two different methods can be used to obtain the diffusion sources. The first
method, i.e., flood method, is used when the user does not provide an input and can be viewed
as the number of segments. The flood method requires iterative computation to obtain the
number of segments. That is to say, the number of diffusion sources can be viewed as the
number of segments. Let Dmax denote the largest of these distances. We select the triangle of
Dmax as the next diffusion source position, i.e., T 1, and update Dmax accordingly. Then, we
continue to iteratively obtain T iþ1 until a T n is found such that the distance between every
triangle in K and every source in the source set T ¼ T 0; T 1; T 2;…; T nf g is less than Dmax.
The second method, namely, the input method is used when the user provides an input t as the
number of segments. Clearly, the actual number of segments is less than the input. The
parameter t also denotes the iteration count. When the iteration count is equal to t, the iteration
process stops automatically, and the final source set T is obtained. where the term | T |
represents the size of the source set, then t > jT j, In contrast to the flood method, for a
source T i, the next source T iþ1 is selected to maximize the distance between T i and T iþ1. In
this case, the source set T often contains the elements of T iþ1. Hence, the actual number of
segments is often less than the number of inputs t.

2. Diffusion from every source in T .

Starting from T 0, we can obtain all its neighbour triangles K0 ¼ N T 0ð Þ , where, the term
N denotes the neighbour table of whole mesh, whose function is to record neighbour

information of every triangle. Let K0 ¼ p∈ 0;m½ �jkp0
� �

, ∀kp0∈K0, we can then calculate the

global distance between T 0 and kp0. The topological network can then be built. In addition,
we can obtain the shortest path Ψ0 from the source point T 0 to its neighbour triangles K0 via
the Dijkstra algorithm. If triangle kj (j ∈ [0,m]) belongs to path Ψ0, it is included in the current
region whose centre is T 0. We then tag kj as 0. Next, the position of region centre T 0 is
recalculated. In this circumstance, new neighbour triangles are added to set K0. Let diffusion
table R denote the tagged information of every source point. Hence, the term R T 0½ � represents
all triangles tagged as 0. In essence, the term R T 0½ � always is updated via diffusion. This
process is called regional diffusion. Subsequently, the above steps are repeated until there are
no triangles in the neighbour set N T 0ð Þ that can be used for diffusion. That is,
∀T i∈T and T i≠T 0;∀kiϵ K and ki∈K0;∄ kið Þ dglobal ki; T ið Þ > dglobal ki; T 0ð Þ. Likewise, this
regional diffusion process is applied to T i (0 < i ≤ n). Note that if triangle kj belongs to the
region whose centre is T i, it is tagged as i.

After all the source points in T have completed their regional diffusion, any remaining
untagged triangles are also diffused. In the end, we obtain the cluster index of each triangle,
which is then output as a file.

4.1.2 Metrics of the distance

Because the Dijkstra algorithm depends on the distance metric, we consider two types of
distance – the centroid distance dcentroid and the angular distance dangular. Figure 3 illustrates
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these two types of distance. In the figure, Ni and Nj are the normal vectors of their triangles,
Diff represents the difference vector between the centroids of triangles Ti and Tj, and θ denotes
the angle between Diff and Ni and Nj (according to the direction of the vector Diff). We define
the centroid distance as

dcentroid i; jð Þ ¼ c!i− c!se

��� ���
2
þ c!j − c!se

��� ���
2

ð1Þ

where SE is the shared edge of triangles Ti and Tj, and c!i and c!se are the centroid of
triangle Ti and the middle point of edge SE, respectively. The angular distance is defined as

dangular i; jð Þ ¼ μ*jSEj* cos−1 ηð Þ
π

ð2Þ

where μ is a control value indicating whether the surface is concave. If the dot product between
the vector Diff and normal vector Ni of triangle Ti, the surface between triangles Ti and Tj is
concave, and the value of μ is set to 1. Otherwise, the surface is convex, and the value of μ is
set to 0.2. The term η is the dot product between normal vector Ni and normal vector Nj.
However, we restrict the parameter η within [−1, 1]; i.e., if η > 1, then η = 1, else if η < − 1,
then η = − 1. The range of angular distance is easy to find, i.e., 0 < dangular(i, j) < ∣ SE∣.

The global distance dglobal is then defined as a weighted sum of the two distances

dglobal i; jð Þ ¼ dcentroid i; jð Þ þ φ* dangular i; jð Þ
Δ

ð3Þ

where Δ denotes the diagonal length of the bounding box of whole model. Here, the weightφ is
an empirical weight that determines the ratio of the angular distance to the global distance. In
general, the larger φ is, the more streamlined the mesh model becomes. Because we need to
assure the global distance be a normalized value (0 ≤ dglobal(i, j) ≤ 1), by many experiments, we
must restrict the term φ within [0,500]. In general, the term φ can be set to a random value in
this range. In this paper, for huge man-made model, we find that bigger value of the parameter
φ, the result is better, therefore, we set φ = 300.

4.1.3 Regional diffusion and fragments removal

The process of regional diffusion is shown in Figure 4.
For diffusion source T 0, we conduct the task of initialization to construct a Dijkstra

distance table D. Except for the source T 0, all the values are infinity. Then, the distance of
every triangle in Dijkstra distance table D can be computed is as Eq. 4,

D1
D2 HalfPoint

Centroid Ci

Centroid Cj

Centroid Distance(Ci , Cj) = D1+D2

Ni
Trianglei

Trianglej

Diff

DiffNi

=Ni dot Diff 
if  θ > 0  concave μ=1
Else     convex  μ=0.2

Nj

Angular Distance(Ci , Cj) 
μ D3 (η)

D3 Ni

Nj

η = Ni dot Nj
η 

Figure 3 The two-distance metrics: centroid vs. angular

World Wide Web (2018) 21:1425–1448 1431



D x½ � distance½ � ¼
0 x∈T

min
0≤ i< Tj j

dglobal x; T ið Þ x∈K
(

ð4Þ

where, the term Tj j denotes the size of the source set T .
Regional diffusion continuously updates the value of distance table D until diffusion is

completed. Furthermore, Neighbour table N is used to represent their neighbour information
of every triangle, and the diffusion tableR is used to denote the diffusion information of every
source. In fact, the final segmentation result can be obtained by iteratively updating this table.
Clearly, the position of every source also need to continuously updated.

The result of regional diffusion is the segmentation file. In this file, each triangle is assigned
to at least one region that has been recorded. The final task is to split the mesh according to the
index information given in the file. Because of the many shared edges and vertices, (many)
edges and vertices belong to many different regions. Therefore, the vertices and triangles must
be re-indexed to split the whole mesh. The unique indexing for the triangles can be easily
determined (as each triangle can belong to only one region). However, the indexing of edges
and vertices is challenging. We use the half-edge data structure (Kettner [16]) to denote the
vertex-triangle relationship and construct a list to build the relationships between regions and
triangles. To re-index the vertices, we visit them from a triangle index and obtain all the shared
edges from each component. Nevertheless, many redundant components, which can be called
fragments, exist.

The scale of every fragment is very small and has a minimal effect on the restoration or
structure of the whole mesh. However, because the number of fragments is often large, process
fragments, including repetition detection, consumes a large amount of time. Moreover, in our
proposed repetition detection method, the fragments are very similar, but it is almost impos-
sible for these repetitive fragments to be restored via geometric transformation. Above all,
these fragments are not similar at all. Therefore, we adopt a strategy to remove these
fragments. Consider a component ci from the whole mesh ℵ = {(vi, tj, s)| 0 ≤ i ≤N, 0 ≤ j ≤
M}, where s is the number of components, and N and M are the number of vertices of the
whole mesh and the number of triangles of the whole mesh, respectively. When the following
conditions (both Eqs. (5) and (6)) are satisfied, ci is identified as redundant and is subsequently
abandoned. The number of triangles in every component is controlled by Eq. (5), but in some
cases, some small components may not be fragments. In this case, the variance of the area of
every component is considered via Eq. (6). If a component is very small but its area variance is
large, it can be viewed as a fragment.
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Ψ cið Þ≤min α∗
1

s
∑s

i¼1Ψ cið Þ;β∗M
� �

ð5Þ

H cið Þ− 1

s
∑s

j¼1H c j
� �� �2

≥ξ
1

s
H ℵð Þ− 1

s
∑s

j¼1H c j
� �� �2

ð6Þ

where Ψ andH represent the number and the area of the triangles, respectively, and α, β, ξ
are empirical terms. Experiments show that good results are obtained when these terms are,
respectively, set to 10%, 0.5%, and 50.

An overview of the re-indexing and outputting components process is shown in Figure 5.
Figure 5 illustrates the steps of how to output components based on segmentation.

The above steps have conducted the task for tagging every triangle, and the related
segmentation file can be obtained. In this segmentation file, every triangle would be
tagged as a part of a component. Then a half-edge data structs [16] is used to better
visit related triangles. However, the task of outputting components need to split whole
mesh into many individual models, re-indexing mesh is a necessary step. The shared
edges between every segmentation should be obtained, so that the triangle of the
shared edges must be re-indexed. In this paper, the OBJ format is used to output
mesh, therefore, every triangle index need to be re-assigned. Under this circumstance,
by means of half-edge data structs, the triangle is re-indexed. Finally, we need to
remove these fragments, as the above mention, the fragments would affect the result
of repetitive detection and put little effect on the final restoration over Web browser.
Moreover, the related components can be outputted as individual models. Hence, the
task for segmentation of whole mesh is completed.
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Figure 5 Re-indexing and outputting components
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4.2 Voxel-based repetition detection

After mesh segmentation, we have the segmented components. Our next task is to identify
repetitive components. The word “repetition” here means identical or nearly identical compo-
nents subject to rigid body transformations. Typically, man-made models have a high degree of
component repetition. Before applying our proposed voxel-based repetition detection proce-
dure to the components, we filter out relatively small (thus less significant) components,
specifically, a component is exempted if its surface area (i.e., the summation of the areas of its
triangles) is less than 2% of the total surface area of the model. Then, for the remaining
components, we first compare the surface areas of two components A and B in pairwise
manner; if their difference is less than a given threshold, voxel-based similarity checking is
performed, this is pre-processing step. In this step, we need to obtain the possible repetition
components set P. For random two components ci, cj, according to Eq. 7, the possible
repetition pair pk can be confirmed,

jΑ cið Þ−A c j
� �

j
max Α cið Þ;A c j

� �� � < δ ð7Þ

where the function Α is to compute the area of component, the term δ is a given threshold,
because repeated components maybe exist some deformation, their area maybe are not totally
some. By many different experiments, we set this threshold δ = 0.01. Under this circumstance,
any two components that meet the condition (Eq. 7) can be formed as a pair of possible
repetition, which can be mathematically denoted as the term pk. Finally, we can obtain the
possible repetition components set P ¼ 0≤k < n jpkf g (the term n is the size of the set P).

We first need to determine the size of the voxels used to represent A and B; clearly, A and B
must have the same number of voxels. We set the base voxel size to 0.01*0.01*0.01 and the
voxel precision to 0.001 to facilitate the computation. In this case, every voxel consists of k
base voxels, where k depends on the size of the original model. In fact, k is the same for every
component. Geometrically, each voxel is defined by 6 square faces and 12 triangles. Hence, a
12-triangle index structure must be built to index any voxel cube. We can identify every
triangle using 3 integers as its index, which is a popular indexing format adopted by many
commercial file systems, such as OFF and OBJ. Then, we can calculate the volume of every
voxel cube based on these index sequences. Clearly, the index sequences are not unique. The
process of computing the volume of a voxel cube is illustrated in Figure 6.

For every component, we can then utilize the above method to obtain the total volume of all
the voxel cubes. As the voxel sequences of all the components are identical, sequential
comparison can be performed for every component pair A and B. Let Δ denote the binary
function of comparing the volumes of two corresponding voxel cubes in A and B that is
defined as

Δ ið Þ ¼ 1
0

	
if Vol Aið Þ−Vol Bið Þj j≤ζ

otherwise
ð8Þ

where Vol(Ai) and Vol(Bi) represent the volumes of the ith voxel cubes of A and B, respectively,
i = 1, 2,…, N (N is the total number of voxels), and ζ is the voxel precision, which we set to
0.001. In this paper, the number of voxel cubes is set to 4096, that is, N = 4096.
Therefore, every component is represented by 4096 voxel cubes, which greatly
simplifies the comparison process.
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The similarity measurement S(A, B) between any two components A and B uses the simple
arithmetic average of Δ(i), which is defined as

S A;Bð Þ ¼ 1

N
∑
N

i¼1
Δ ið Þ ð9Þ

That is, A and B are similar if and only if S(A, B) > η. In this paper, the threshold η is set at
0.85. Figure 7 shows a flowchart of the entire process. We can find that the entire process can
be divided two steps. First, we conduct the pre-processing step to obtain the related possible
repetition set P. In this set, there are many components pair which is consists of every two
components. Second, the iterative operation is performed to check all components pair in this
set P, the similarity of every pair can be measured as Eq. 9. After all components pairs are
checked, the repeated components can be confirmed. Hence, we can output all repetitive
components.

4.3 Pose alignment

Pose Alignment method was proposed by WEN et al. [32]. We also use this method in this
paper. Pose alignment includes translation, scaling, and symmetry operation. By these oper-
ations performing on related repetition components, we can obtain a transformation matrix, by
which we can restore the removed repeated components. Specially, to conduct alignment
operation, we need to put these components into a unit space. In this way, it can improve the
efficient of transformation.

Figure 8 illustrates the overview of pose alignment (dash line represents reverse operation),
After performed the operation of normalization, we need to determinate whether the pair of
components align each other in unit space, if they do not align, then the symmetry operation is
conducted, and then continue to determinate the relation of alignment. Under this circum-
stance, if they still not, then they are non-repetitive components. Once the components confirm
the relation of alignment, the reverse operation would be performed to obtain related matrix.
Finally, the repeated component is removed and the transformation matrix can better be an
alternative to repetitive component.
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Figure 6 Calculating the volume of a voxel cube
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It is not hard to find that the entire of pose alignment method can be divided into two parts,
i.e., pre-processing step and transformation step. The aim of pre-processing step is to put these
components into a unit space, i.e. pose normalization. To achieve the task of pose
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Figure 7 The process of repetition detection
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normalization, for every component in repetition pair, we perform translation and scaling
operation, respectively.

For the component ci ∈ pi, the processing of translation is as Eq. 10,

m ¼ 1

E
∑

ti∈Ci

Ei
xi þ yi þ zið Þ

3
ð10Þ

where the term m is the reference size of translation, and the parameter E is the area of the
component ci.Moreover, the term ti is the i

th triangle of the component ci. The terms xi, yi, zi
denote the x-coordinates, y-coordinates, z-coordinates, respectively. Besides, the term Ei is the
area of triangle ti. Next, the scaling equation is as Eq. 11,

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx2 þ sy2 þ sz22

p I ð11Þ

sx ¼
1

jV j ∑v∈V
jvxj ð12Þ

where, the term S is scaling matrix, accordingly, the term sx represents the scaling value in x-
axis. In Eq. 12, the term ∣V∣ is the vertices number in the component ci. Surely, the variable vx
is the x coordinates of the vertex v. Likewise, we can compute the scaling matrix in y-axis and
z-axis. In addition, the term I denotes an identity matrix.

Furthermore, symmetry operation is as Eq. 13,

F ¼ diag sign f xð Þ; sign f y
� �

; sign f z
� �� �

ð13Þ

f x ¼ ∑
v∈V

sign vxð Þvx2 ð14Þ

where the term F denotes the diagonal matrix, the function diag generates a symmetric

tridiagonal matrix, i.e.diag 1; 0; 1ð Þ ¼
1 0 0
0 0 0
0 0 1

2
4

3
5, in addition, the function sign(α) = 1, if α ≥

0, otherwise, sign(α) = 0. Through Eq. 14, we can obtain the symmetry value fx in x-axis.
Likewise, the symmetry value fy, fz can be obtained. In practice, for majority of man-made
models that exist many repetitive components, symmetry operation is used to complete the
transformation task.

To determine the relation of alignment, we use the approach of voxel alignment
method, instead of AABBs method. After conducting pose normalization operation,
for every two components, the position of their corresponding voxel cube are com-
pared. Equation 15 is a decision function to determine the relation of alignment. For
two component A, B, their corresponding voxel cube can be represented as the term
Ai, Bi,

Θ A;Bð Þ ¼ 1
if

1

N
∑
N−1

i¼0
∏
8

j¼0
Ψ A

! j

i ; B
! j

i

� �
≥ϵ

0 otherwise

8<
: ð15Þ
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Ψ A
! j

i ; B
! j

i

� �
¼ A

! j

i−B
! j

i

����
����
2

¼ 1 if Ψ A
!j

i ; B
!j

i

� �
≤θ

0 otherwise

8<
: ð16Þ

where the terms A
! j

i ; B
! j

i represent vertex vector in voxel cube Ai, Bi, respectively. The
Euclidean distance is used to measure their differences. The term θ is the voxel precision,
which we set to 0.001. That is, A and B aligned each other if and only ifΘ(A, B) = 1. The term
ϵ still is experimental value, by experiments, we set the term ϵ = 0.95. Likewise, N is the total
number of voxels, it is set to 4096, that is, N = 4096.

4.4 Fine-grain scene graph (FG-SG)

At this point, for a given mesh model, we have segmented it into individual components and
identified repetitions. For any group of identical components obtained by pose normalization
and geometrical transformation, only one representative needs to be transmitted over the Web,
thereby substantially decreasing the transmission time. On the other hand, to further increase
the transmission efficiency and to target models with few repetitions, we employ progressive
meshing and multi-thread loading.

Hopper [8] proposed the general algorithm for progressive meshing (PM) during decima-
tion, which made substantial improvement relative to classic decimation methods. Hopper’s
algorithm was the first algorithm that employed the edge collapse operator. However, the
algorithm difficulties in distinguishing important shape features, such as high-curvature
regions. Therefore, the PM method is typically better suited for a single smooth component.
In this paper, we utilize the PM method for mesh transmission. In the initial stage, the Web
browser loads a base mesh structure, which is then progressively restored to the original whole
mesh structure via the edge split operation.

In addition, every individual component can be independently and asynchronously loaded
in its sub-thread and have its data sent to the main thread. In this way, the impact of data
loading on mesh rendering can be reduced to near its minimum.

For a better realization of the proposed framework over Web browsers, we define a fine-
grained scene graph file (FG-SG) to indicate which components should be operated by the PM
method and which components should be processed by repetition transformation. The struc-
ture of FG-SG and the process of parsing an FG-SG file are shown in Figure 9.

Figure 9 illustrates the structure of fine-grain scene graph (FG-SG), for a complex scene S,
there are many different models, it can be represented as follows, S ¼ 1≤ i≤njMif g, then for
every model Mi = {1 ≤ k ≤K|ck}, where the term K represents the number of components.
Clearly, different models include different the number of components. In addition, the model
Mi can be represents as follows, Mi ¼ Pi;W if g, where the term Pi represents the repetition
components set, and the term W i denotes the non-repetition set. Moreover, for the repetition

components set Pi ¼ 1≤u≤Ujpui
� �

, ∀pui , it is represented a component and transformation

matrix Tu
i . Besides, by the progressive mesh (PM) method, the component can be reduced.

We assume the ratio of PM θ = 0.5, then the ratio λ of the size of the processed model to the

original model size can be calculated as follows, λ ¼ θ U
2þ K−Uð Þ½ �

K ¼ 2K−U
4K < 0:5, where the term

K represents the number of components, the term U represents the number of repetition
components pair, i.e., the number of repetition set Pi. In addition, the parameter θ represents
the ratio of PM operation. In this paper, this parameter θ can be set to 0.5. Obviously, the more
repetitive components in the model, the more the size of model is reduced by our method.
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5 Experimental results

We implemented a prototype of the S-LPM framework using C++. In this section, we report
the results of a batch of experiments performed to validate the proposed methodology.
Specifically, we tested the proposed mesh segmentation method and the repetition detection
method and finally displayed the results on a Web browser. To evaluate our segmentation
algorithm, we compared our method with state-of-the-art approaches onWatertight Track from
the SHREC 2007 dataset, which is a popular test dataset used by many mesh segmentation
systems/solvers. The experiments were conducted on a PC running Windows 7 OS with an
Intel core I5-M580 processor and a 4 GB of memory.

5.1 Mesh segmentation

We compare our proposed method with state-of-the-art methods on theWatertight Track from the
SHREC 2007 dataset, which consists of 380meshmodels that are grouped into 19 categories. The
compared mesh segmentation methods are K-means (Shlafman et al. [28]), graph cuts (Katz et al.
[14]), random walks (Lai et al. [18]), and core extraction (Katz et al. [15]).
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Figure 9 Overview of building and parsing an FG-SG file

Table 1 Comparison of computing time (measured on a 2.4 GHz PC)

Segmentation algorithm Speed (s) Evaluation

Graph cuts 43.2 Slow
Core extraction 18.3 Medium
Random walks 0.9 Fast
K-means 1.6 Fast
Ours 1.8 Fast
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Table 1 presents the comparison of the total computer time consumed. In terms of running
time, our method is relatively fast and on par with the K-means method; therefore, our method
is expected to be particularly suitable for mobile and Web browser environments.

Additional comparison tests were performed on a benchmark set for 3D mesh segmentation
proposed by CHEN et al. [6]. This benchmark set comprises 4300 manually generated
segmentations of 380 surface meshes in 19 object categories. Five different indicators are
proposed by CHEN et al. [6]: cut discrepancy (CD), Hamming distance (HD), rand index (RI),
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Figure 10 Comparison in terms of five different indicators
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Figure 11 An example of the repetition detection test on the chair model
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global consistency error (GCE), and local consistency error (LCE). The comparison results in
Figure 10 show that our proposed method is closest to the benchmark.

5.2 Repetition detection

The test for repetition detection is focused on the correctness and robustness of the results.
Figure 11 provides a test example to illustrate how closely our method is to human judgement
(i.e., the ground truth).

5.3 Overall evaluation

Five different models, whose sizes are given in Table 2, were used to test our overall system
for displaying a complex mesh model on a Web browser.

Figure 12 shows the chair model processed by our system after the repetitive components
are automatically detected and removed. As a result of the data reduction, only 0.267 MB data
is transmitted through the internet, compared to the original 1 MB. The Web browser then
performs pose alignment (cf. [32]) to correctly restore the original complete 3D shape. Even
including the model restoration time on the browser side, the total computer time consumed to
display the whole chair on the screen for our method is approximately 1/3 that of the original.
Three more examples are given in Figure 13.

The proposed framework mainly includes mesh segmentation, repetition detection, pose
alignment, and restoration in a Web browser. We performed additional related experiments on

Table 2 The sizes of the test models

Models #V #F #Size (MB)

Chair 15,324 29,516 0.982
Bench 10,288 42,304 0.98
Slatted bench 50,679 133,968 4.02
Bike 69,515 130,446 5.28
Suit 242,791 455,494 66.6

#Models #Size(MB)

Original 1

Processed 

by S-LPM
0.267

Figure 12 Reduction of the data by our repetition detection/removal method on the chair model
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the SHREC’07 dataset to further evaluate our proposed framework. Figure 14 shows that the
overall accuracy of our proposed framework is higher than the segmentation accuracy. The
accuracy of framework does not depend on segmentation, because the aim of segmentation is
to achieve repetition removal. When low repetition components are detected, by multithread
loading many different components, our framework still achieves the visualization task over
Web browser. Therefore, the high accuracy of framework can still be obtained, whereas, more
time maybe spent to visualize the model over Web browser.

To further validate the advantages of our proposed framework, we compared it with the
method by Cai et al. [5], which identifies similarities by degenerating the shape’s PCAs.
Additionally, as a comparison benchmark, we recorded the time required to directly load the
original large model in the browser – let it be called the direct display mode. Figure 15 shows
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Figure 13 Data reduction by our S-LPM framework
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Figure 14 Accuracy comparison of every method and the overall framework for the SHREC’07 dataset
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the time consumed by the three methods. As clearly shown in the figure, when the scale of the
model is not large, our method and Cai’s method are on par with each other. However, when
the size of the model becomes large, such as the suit model, the advantage of our method
becomes clear. Besides, we compared our framework with the above methods in accuracy
indicator. Where the term Α, B represented the number of triangles of original mesh, and the
actual number of triangles over web browser, respectively. The accuracy indicator is denoted
as following Eq. 17. The comparison result over accuracy criterion can be seen in Figure 15.

Accuracy ¼ B
A

ð17Þ

Figure 16 shows the comparison result for five different models, we find that accuracy of
our framework is very approaching to other methods. i.e., the accuracy is greater than 95%, for
huge man-made model, because these tiny differences are very difficult to distinguish by
human eye, this result can be totally accepted.

Figure 17 shows how the entire mesh of the suit is gradually displayed on the screen on the
browser side. Initially, in step (1), only a few components have been loaded rather than the
whole model. As already emphasized, a component-wise strategy is required because the
browser typically has little storage capacity and limited computing ability. When repetitive
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components need to be displayed (steps (3)–(4)), instead of being loaded, they are obtained via
the transformation quaternion. Moreover, after the rendering task of the base mesh is com-
pleted, PM is performed to restore (from step (5) to step (8)) the final model. The mesh
structure changes in steps (5)–(7), which in turn increases the density of the mesh. Therefore,
the size of the current mesh progressively increases until reaching the original size (step (8))
when the model is completely restored and displayed. For steps (1)–(8), the size of the loading
and rendering is 3%, 20%, 30%, 33%, 50%, 60%, 80%, and 100%.

5.4 Examples test

To further validate our proposed methodology, especially on large models, two additional
models, a coat and a shirt (see Table 3 for their sizes), were tested. Figures 18 and 19 show the
progressive loading and browser display of the two models; the original model is completely
restored and displayed on the screen at step (8).

As a final test, a scene with many different man-made models was loaded and displayed
using the proposed framework, and the results are shown in Figure 20. In this test, our method
reduces the size of the scene by 51%, which translates into a substantial increase in the loading
and displaying speed of the whole model.

(1) (2)                                   (3) (4)

(5) (6)                                   (7) (8)

Figure 17 The sequence of progressive loading and displaying of the suit model over the Web browser

Table 3 Two large models

Model #V #F #Size (MB)

Coat 184,879 298,866 33.2
Shirt 151,984 221,722 25.4
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6 Conclusions

In this paper, we have proposed a new lightweight framework – the S-LPM framework – to
process large models to improve the efficiency of their transmission through the net and their

(1) (2)                                   (3) (4)

(5) (6)                                   (7) (8)

Figure 18 Progressive loading and display of the coat

(1) (2)                                   (3) (4)

(5) (6)                                   (7) (8)

Figure 19 Progressive loading and display of the shirt
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visualization in Web browsers. The proposed framework comprises two key technical com-
ponents, i.e., Dijkstra-based mesh segmentation and voxel-based repetition detection, which
together significantly reduce the amount of data transmitted over the net and hence the
demands on computer time and memory. In addition, a fine-grained scene graph file
is obtained to determine for which components to adopt the PM method for data
transmission and for which repeated components to perform the transformation from
the mesh level to the component level. Experiments performed on some representative
models validated the advantages of the proposed framework over some traditional
methods, such as direct loading and display.

Regarding future research, first, our mesh segmentation algorithm currently crucially
depends on the geometric topology but ignores the semantics. It will be interesting to see
how considering semantics could help the segmentation. Second, certain unique
geometric properties, e.g., symmetry, should be explored to simplify either the mesh
segmentation or the repetition detection. Finally, we need to test our framework on
models with unique features, such as buildings or furniture, to determine whether
modification is required to adapt the models.

Acknowledgments The authors appreciate the comments and suggestions of all anonymous reviewers, whose
comments helped significantly improve this paper. This work is supported by the Fundamental Research Funds
for the Central Universities in China (2100219066) and the Key Fundamental Research Funds for the Central
Universities in China (0200219153).

References

1. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3D mesh segmentation methodologies
for CAD applications [J]. Comput.-Aided Des. Applic. 4(6), 827–841 (2007)

2. Aleksey, G., Funkhouser, T.: Consistent segmentation of 3D models [J]. Comput. Graph. 33(3), 262–269
(2009)

3. Attene, M., Katz, S., Mortara, M., et al.: Mesh segmentation - a comparative study [C]. IEEE International
Conference on Shape Modeling and Applications, pp. 7–7. DBLP (2006)

4. Cai, K., Wang, W., Chen, Z., et al.: Exploiting repeated patterns for efficient compression of massive models
[C]. VRCIA, pp. 145–150. ACM (2009)

Figure 20 A scene with many different man-made models

1446 World Wide Web (2018) 21:1425–1448



5. Cai, K., Teng, J., Teng, J., et al.: Exploiting repeated patterns for efficient compression of massive models
[C]. International Conference on Virtual Reality Continuum and ITS Applications in Industry, pp. 145–150.
ACM (2009)

6. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation [J]. ACM Trans.
Graph. 28(3), 1–12 (2009)

7. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces [C].
Symposium on Interactive 3d Graphics, Si3d 2001, Chapel Hill, Nc, Usa, March, pp. 49–58. DBLP (2001)

8. Hoppe, H.: Progressive meshes [J]. In: Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques [C], ACM SIGGRAPH ‘96, pp. 99–108 (1996)

9. Hu, R., Fan, L., Liu, L.: Co-segmentation of 3D shapes via subspace clustering [C]. Comput. Graphics
Forum. Blackwell Publishing Ltd, pp. 1703–1713 (2012)

10. Huang, Q., Koltun, V., Guibas, L.J., et al.: Joint shape segmentation with linear programming [C].
International Conference on Computer Graphics and Interactive Techniques, 30(6) (2011)

11. Inoue, K., Itoh, T., Yamada, A., Furuhata, T., Shimada, K.: Face clustering of a large-scale CAD model for
surface mesh generation [J]. Comput. Aided Des. 33(3), 251–261 (2001)

12. Isenburg, M., Lindstrom, P., Snoeyink, J.: Streaming compression of triangle meshes [C]. In Proceedings of
the Third Eurographics Symposium on Geometry Processing (SGP '05) (2005)

13. Kalogerakis, E., Chaudhuri, S., Koller, D., et al.: A probabilistic model for component-based shape
synthesis [J]. ACM Trans. Graph. 31(31), 1–11 (2012)

14. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts [J]. ACM Trans. Graph.
22(3), 954–961 (2003)

15. Katz, S., Leifman, G., Tal, A., et al.: Mesh segmentation using feature point and core extraction [J]. Vis.
Comput. 21(8), 649–658 (2005)

16. Kettner, L.: Using generic programming for “designing a data structure for polyhedral surfaces” [J].
Comput. Geom. 13(1), 65–90(26) (1999)

17. Kreavoy V, Julius D, Sheffer A. Model composition from interchangeable components [C]. Computer
Graphics and Applications, 2007 PG'07. 15th Pacific Conference on. IEEE. 129–138 (2007)

18. Lai, Y., Hu, S., Martin, R., et al.: Rapid and effective segmentation of 3D models using random walks [J].
Comput. Aided Geom. Des. 26(6), 665–679 (2009)

19. Lin, H.S., Liao, H.M., Lin, J., et al.: Visual salience-guided mesh decomposition [J]. IEEE Trans.
Multimedia. 9(1), 46–57 (2007)

20. Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering [C]. Pacific Conference on
Computer Graphics and Applications, pp. 298–305 (2004)

21. Liu, X., et al.: Low-rank 3D mesh segmentation and labeling with structure guiding [J]. Comput Graph.
2015, 99–109 (2015)

22. Meng, M., Xia, J., Luo, J., He, Y.: Unsupervised co-segmentation for 3D shapes using iterative multi-label
optimization [J]. Comput. Aided Des. 45(2), 312–320 (2013)

23. Mortara, M., Patane, G., Spagnuolo, M., et al.: Plumber: a method for a multi-scale decomposition of 3D
shapes into tubular primitives and bodies [J]. JISS, pp. 339–344 (2004)

24. Saleem, M., Kamdar, M.R., Iqbal, A., Sampath, S., Deus, H.F., Ngonga Ngomo, A.C.: Big linked cancer
data: integrating linked TCGA and PubMed [J]. Web Semantics Science Services & Agents on the World
Wide Web. 27-28, 34–41 (2014)

25. Savelonas, M.A., Pratikakis, I., Sfikas, K.: An overview of partial 3D object retrieval methodologies [J].
Multimedia Tools and Applications. 74(24), 11783–11808 (2015)

26. Shamir, A.: Segmentation and shape extraction of 3D boundary meshes [C]. State of the Art Report
Eurographics (2006)

27. Shikhare, D., Bhakar, S., Mudur, S.P.: Compression of large 3D engineering models using automatic
discovery of repeating geometric features [C]. Vision Modeling and Visualization Conference, pp. 233–
240. Aka GmbH (2001)

28. Shlafman, S., et al.: Metamorphosis of polyhedral surfaces using decomposition [J]. Comput.Graphics
Forum. 21(3), 219–228 (2002)

29. Sidi O, Kaick O V, Kleiman Y, et al.: Unsupervised co-segmentation of a set of shapes via descriptor-space
spectral clustering [J]. ACM Trans. Graph. 30(6), 1–10 (2011)

30. Theologou, P., Pratikakis, I., Theoharis, T.: A review on 3D object retrieval methodologies using a part-
based representation [J]. Comput.-Aided Des. Applic. 11(6), 670–684 (2014)

31. Theologou, P., Pratikakis, I., Theoharis, T., et al.: A comprehensive overview of methodologies and
performance evaluation frameworks in 3D mesh segmentation [J]. Comput. Vis. Image Underst. 135, 49–
82 (2015)

32. Wen L., Xie N, Jia J. Fast accessing Web3D contents using lightweight progressive meshes [J]. Comput.
Anim. Virtual Worlds. 27(5), 466–483 (2016)

World Wide Web (2018) 21:1425–1448 1447



33. Xu, K., Li, H., Zhang, H., et al.: Style-content separation by anisotropic part scales [J]. ACM Trans Graph.
29(1), 184 (2010)

34. Zhang, H., Gao, X., Wu, P., et al.: A cross-media distance metric learning framework based on multi-view
correlation mining and matching [J]. Web Semantics Science Services & Agents on the World Wide Web.
19(2), 181–197 (2016)

1448 World Wide Web (2018) 21:1425–1448


	S-LPM:...
	Abstract
	Introduction
	Related work
	Proposed framework
	Details of the S-LPM framework
	Dijkstra-based mesh segmentation
	Description of the algorithm
	Metrics of the distance
	Regional diffusion and fragments removal

	Voxel-based repetition detection
	Pose alignment
	Fine-grain scene graph (FG-SG)

	Experimental results
	Mesh segmentation
	Repetition detection
	Overall evaluation
	Examples test

	Conclusions
	References


