初学者入门教程中,使用tf.keras.Sequential模型,只是简单的堆叠模型。 本文是专家级入门,使用 Keras 模型子类 API 构建模型,会使用更底层一点的的函数接口,自定义模型、损失、评估指标和梯度下降控制等,流程清晰。
开始,请将TensorFlow库导入您的程序:
x1from __future__ import absolute_import, division, print_function, unicode_literals
2
3import tensorflow as tf # 安装命令 `pip install tensorflow-gpu==2.0.0-alpha0`
4
5from tensorflow.keras.layers import Dense, Flatten, Conv2D
6from tensorflow.keras import Model
加载并准备MNIST数据集.。
xxxxxxxxxx
81mnist = tf.keras.datasets.mnist
2
3(x_train, y_train), (x_test, y_test) = mnist.load_data()
4x_train, x_test = x_train / 255.0, x_test / 255.0
5
6# 添加一个通道维度
7x_train = x_train[..., tf.newaxis]
8x_test = x_test[..., tf.newaxis]
使用tf.data批处理和随机打乱数据集:
xxxxxxxxxx
31train_ds = tf.data.Dataset.from_tensor_slices(
2 (x_train, y_train)).shuffle(10000).batch(32)
3test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
通过使用Keras模型子类 API构建tf.keras
模型:
xxxxxxxxxx
151class MyModel(Model):
2 def __init__(self):
3 super(MyModel, self).__init__()
4 self.conv1 = Conv2D(32, 3, activation='relu')
5 self.flatten = Flatten()
6 self.d1 = Dense(128, activation='relu')
7 self.d2 = Dense(10, activation='softmax')
8
9 def call(self, x):
10 x = self.conv1(x)
11 x = self.flatten(x)
12 x = self.d1(x)
13 return self.d2(x)
14
15model = MyModel()
选择优化器和损失函数进行训练:
xxxxxxxxxx
31loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
2
3optimizer = tf.keras.optimizers.Adam()
选择指标(metrics)以衡量模型的损失和准确性。这些指标累积超过周期的值,然后打印整体结果。
xxxxxxxxxx
51train_loss = tf.keras.metrics.Mean(name='train_loss')
2train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
3
4test_loss = tf.keras.metrics.Mean(name='test_loss')
5test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
使用tf.GradientTape
训练模型:
xxxxxxxxxx
101function .
2def train_step(images, labels):
3 with tf.GradientTape() as tape:
4 predictions = model(images)
5 loss = loss_object(labels, predictions)
6 gradients = tape.gradient(loss, model.trainable_variables)
7 optimizer.apply_gradients(zip(gradients, model.trainable_variables))
8
9 train_loss(loss)
10 train_accuracy(labels, predictions)
现在测试模型:
xxxxxxxxxx
71function .
2def test_step(images, labels):
3 predictions = model(images)
4 t_loss = loss_object(labels, predictions)
5
6 test_loss(t_loss)
7 test_accuracy(labels, predictions)
xxxxxxxxxx
151EPOCHS = 5
2
3for epoch in range(EPOCHS):
4 for images, labels in train_ds:
5 train_step(images, labels)
6
7 for test_images, test_labels in test_ds:
8 test_step(test_images, test_labels)
9
10 template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
11 print (template.format(epoch+1,
12 train_loss.result(),
13 train_accuracy.result()*100,
14 test_loss.result(),
15 test_accuracy.result()*100))
xxxxxxxxxx
31Epoch 1, Loss: 0.13177014887332916, Accuracy: 96.06000518798828, Test Loss: 0.05814294517040253, Test Accuracy: 98.04999542236328
2...
3Epoch 5, Loss: 0.042211469262838364, Accuracy: 98.72000122070312, Test Loss: 0.05708516761660576, Test Accuracy: 98.3239974975586
现在,图像分类器在该数据集上的准确度达到约98%。要了解更多信息,请阅读 TensorFlow教程.。
最新版本:https://www.mashangxue123.com/tensorflow/tf2-tutorials-quickstart-advanced.html 英文版本:https://tensorflow.google.cn/beta/tutorials/quickstart/advanced 翻译建议PR:https://github.com/mashangxue/tensorflow2-zh/edit/master/r2/tutorials/quickstart/beginner.md